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Graphs = System of Relations and Interactions
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Graph Classification via Graph Neural Networks (GNNs)

Social network



Graph Classification via GNNs

Adjacency Feature
matrix x matrix x
T 1]
Social network A X

Graph function ( , )




Graph pooling in GNNs

Ignoring any hierarchical structure that might be present in the graph



Graph pooling in GNNs
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Graph pooling in GNNs
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Notation

Adjacency matrix A e {0,1}xm Learnable cluster
assignment matrix

S) e R Xnit1

Feature matrix F € RnXxd
Goal of graph .
classification f g =Y

Graph G as (A F)

Node embeddings

computed after k H(k) ¢ Rnxd

steps of GNN

Node embeddings () y -

of coarsened graph ’

Dataset D = {(G1,1), (G2, 1), ...},

Yy € Y
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DIFFPOOL

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

Graph coarsening and classification via DIFFPOOL
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DIFFPOOL

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

Graph coarsening and classification via DIFFPOOL

Learning cluster assignment matrix

S = softmax (GNNl,pool(A(l), X(l))>
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DIFFPOOL

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 atlevel 3 classification

Graph coarsening and classification via DIFFPOOL

Learning cluster assignment matrix Updating embeddings and adjacency matrix
Z(l) — GNNl,embed(A(l) ) X(l))
S = softmax (GNNZ pool(A(”, xW® )) X+ — g 7 () ¢ pruss xd

A = gOF 40 g ¢ Rrus X
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DIFFPOOL: Regularization terms

Entropy Regularization

Ly = % Z?ﬂ H(S;)

Assignment matrix x

i

With: [0.95, 0.01, 0.02, 0.02]

Without: [0.33, 0.34, 0.20, 0.13]

Adjacency
matrix x
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DIFFPOOL: Regularization terms

Entropy Regularization Assignment matrix x

[T 11
S U N . ¥ Adjacency
Lg = n Zi:l H(S’&) (_\/’\ matrix x

With: [0.95, 0.01, 0.02, 0.02]

Without: [0.33, 0.34, 0.20, 0.13]

Auxiliary Link Prediction Objective 0 O

T
Lip = ||AW), S(Z)S(Z)T“F x E The higher the better

x I The lower the better
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Experimental results

Kernel

GNN

Data Set

Method

ENZYMES D&D REDDIT-MULTI-12K  COLLAB PROTEINS Gain
GRAPHLET 41.03 74.85 21.73 64.66 72.91
SHORTEST-PATH 42.32 78.86 36.93 59.10 76.43
I-WL 5343 74.02 39.03 78.61 73.76
WL-OA 60.13 79.04 44 .38 80.74 75.26
PATCHYSAN — 76.27 41.32 72.60 75.00 4.17
GRAPHSAGE 54.25 7342 42.24 68.25 70.48 —
ECC 53.50 74.10 41.73 67.79 72.65 0.11
SET2SET 60.15 78.12 43.49 T1.75 74.29 3.5
SORTPOOL .12 79.37 41.82 73.76 75.54 3.39
DIFFPOOL-DET 58.33 1547 46.18 82.13 75.62 542
DIFFPOOL-NOLP 61.95 79.98 46.65 75.58 76.22 5.95
DIFFPOOL 62.53 80.64 47.08 75.48 76.25 6.27
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Take-home Message

e Motivation:

» Original GNN architectures are unable to infer and aggregate the information in a hierarchical way.

* Challenge:
» Graphs contain no natural notion of spatial locality, i.e., one cannot simply pool together all nodes in a

“m x m patch” on a graph.

* Main contributions:
» Propose DIFFPOOL that can generate hierarchical representations of graphs;

» DIFFPOOL can be combined with various graph neural network architectures in an end-to-end fashion;
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Thanks for your attention!




