Hierarchical Graph Representation Learning with Differentiable Pooling

Authors: Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, Jure Leskovec

> **Speaker:** Ziyuan Ye Thursday, August 18, 2022

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., & Leskovec, J. (2018). Hierarchical graph representation learning with differentiable pooling. Advances in neural information processing systems (NeurIPS), 31.

About the authors

Representative Work:

- ✓ GraphSAGE
- ✓ GNNExplainer
- ✓ DIFFPOOL

	Zhitao (Rex) Ying		🔀 关注	引月
	<u>Yale University</u> 在 yale.edu 的电子邮件经过验证 - <u>首页</u>			
•	Machine learning Graph neural networks Representation Learning Recommender system	Knowledge graph		引用 h 指 i10 i
标题		引用次数	年份	
Inductive repres W Hamilton, Z Ying Advances in neural	sentation learning on large graphs), J Leskovec I information processing systems 30	7088	2017	
Graph convolut R Ying, R He, K Ch Proceedings of the	ional neural networks for web-scale recommender systems nen, P Eksombatchai, WL Hamilton, J Leskovec 24th ACM SIGKDD international conference on knowledge	1907	2018	
Representation WL Hamilton, R Yir arXiv preprint arXiv	learning on graphs: Methods and applications ng, J Leskovec ::1709.05584	1629	2017	
Hierarchical gra Z Ying, J You, C Mo Advances in neural	aph representation learning with differentiable pooling orris, X Ren, W Hamilton, J Leskovec I information processing systems 31	873	2018	开放
Graph convolut J You, B Liu, Z Ying Advances in neural	ional policy network for goal-directed molecular graph generation g, V Pande, J Leskovec I information processing systems 31	600	2018	无法根据

开放获取的出版物数量	查看全部
1 篇文章	16 篇文章
无法查看的文章	可查看的文章
根据资金授权书	

- 1. Background
- 2. Research content
- 3. Experimental results
- 4. Take-home message

- 1. Background
- 2. Research content
- 3. Experimental results
- 4. Take-home message

Graphs = System of Relations and Interactions

Molecules

Brain connectivity

Social Network

Graph Classification via Graph Neural Networks (GNNs)

Social network

Graph

Graph Classification via GNNs

Feature matrix $n \times d$

Social network

X

Graph pooling in GNNs

Ignoring any hierarchical structure that might be present in the graph

Graph pooling in GNNs

Graph pooling in GNNs

- 1. Background
- 2. Research content
- 3. Experimental results
- 4. Take-home message

Notation

Adjacency matrix

Feature matrix

Graph

Node embeddings computed after k steps of GNN

Node embeddings of coarsened graph

Dataset

$$A \in \{0, 1\}^{n \times n}$$
$$F \in \mathbb{R}^{n \times d}$$
$$G \text{ as } (A, F)$$
$$H^{(k)} \in \mathbb{R}^{n \times d}$$
$$Z^{(k)} \in \mathbb{R}^{m \times d}, m < n$$
$$\mathcal{D} = \{(G_1, y_1), (G_2, y_2), \ldots\},$$
$$y_i \in \mathcal{Y}$$

Learnable cluster assignment matrix

 $S^{(l)} \in \mathbb{R}^{n_l \times n_{l+1}}$

Goal of graph classification

 $f:\mathcal{G}\to\mathcal{Y}$

DIFFPOOL

Graph coarsening and classification via DIFFPOOL

DIFFPOOL

Graph coarsening and classification via DIFFPOOL

Learning cluster assignment matrix

$$S^{(l)} = \operatorname{softmax}\left(\operatorname{GNN}_{l,\operatorname{pool}}(A^{(l)}, X^{(l)})\right)$$

DIFFPOOL

Graph coarsening and classification via DIFFPOOL

Learning cluster assignment matrix

$$S^{(l)} = \operatorname{softmax}\left(\operatorname{GNN}_{l,\operatorname{pool}}(A^{(l)}, X^{(l)})\right)$$

Updating embeddings and adjacency matrix

$$Z^{(l)} = \text{GNN}_{l,\text{embed}}(A^{(l)}, X^{(l)})$$
$$X^{(l+1)} = S^{(l)^T} Z^{(l)} \in \mathbb{R}^{n_{l+1} \times d},$$
$$A^{(l+1)} = S^{(l)^T} A^{(l)} S^{(l)} \in \mathbb{R}^{n_{l+1} \times n_{l+1}}$$

DIFFPOOL: Regularization terms

Entropy Regularization

$$L_{\rm E} = \frac{1}{n} \sum_{i=1}^{n} H(S_i)$$

Assignment matrix $n \times m$

Adjacency matrix $n \times n$

- 1. Background
- 2. Research content
- 3. Experimental results
- 4. Take-home message

Experimental results

	Method			Data Set			,
	Wiethou	ENZYMES	D&D	Reddit-Multi-12k	COLLAB	PROTEINS	Gain
Kernel	GRAPHLET	41.03	74.85	21.73	64.66	72.91	70
	SHORTEST-PATH	42.32	78.86	36.93	59.10	76.43	
	1-WL	53.43	74.02	39.03	78.61	73.76	
	WL-OA	60.13	79.04	44.38	80.74	75.26	
GNN	PATCHYSAN	24 <u>-</u>	76.27	41.32	72.60	75.00	4.17
	GRAPHSAGE	54.25	75.42	42.24	68.25	70.48	<u></u>
	ECC	53.50	74.10	41.73	67.79	72.65	0.11
	Set2set	60.15	78.12	43.49	71.75	74.29	3.32
	SORTPOOL	57.12	79.37	41.82	73.76	75.54	3.39
	DIFFPOOL-DET	58.33	75.47	46.18	82.13	75.62	5.42
	DIFFPOOL-NOLP	61.95	79.98	46.65	75.58	76.22	5.95
	DIFFPOOL	62.53	80.64	47.08	75.48	76.25	6.27

- 1. Background
- 2. Research content
- 3. Experimental results
- 4. Take-home message

Take-home Message

- Motivation:
 - > Original GNN architectures are unable to infer and aggregate the information in a hierarchical way.
- Challenge:
 - Graphs contain no natural notion of spatial locality, i.e., one cannot simply pool together all nodes in a "m × m patch" on a graph.

• Main contributions:

- Propose DIFFPOOL that can generate hierarchical representations of graphs;
- > DIFFPOOL can be combined with various graph neural network architectures in an end-to-end fashion;

Thanks for your attention!