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Representative Work:

ü GraphSAGE
ü GNNExplainer
ü DIFFPOOL
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Graphs = System of Relations and Interactions
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Graph Classification via Graph Neural Networks (GNNs)
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Graph Classification via GNNs
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Graph pooling in GNNs
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Ignoring any hierarchical structure that might be present in the graph



Graph pooling in GNNs
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Graph pooling in GNNs
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Notation
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DIFFPOOL 
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Graph coarsening and classification via DIFFPOOL



DIFFPOOL
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Graph coarsening and classification via DIFFPOOL
Learning cluster assignment matrix



DIFFPOOL
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Updating embeddings and adjacency matrix

Graph coarsening and classification via DIFFPOOL
Learning cluster assignment matrix



DIFFPOOL: Regularization terms
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Entropy Regularization

With: [0.95, 0.01, 0.02, 0.02]

Without: [0.33, 0.34, 0.20, 0.13]
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DIFFPOOL: Regularization terms
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Auxiliary Link Prediction Objective

Entropy Regularization

With: [0.95, 0.01, 0.02, 0.02]

Without: [0.33, 0.34, 0.20, 0.13]

The higher the better

The lower the better
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Experimental results
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Take-home Message
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• Motivation: 
Ø Original GNN architectures are unable to infer and aggregate the information in a hierarchical way.

 

• Challenge:
Ø Graphs contain no natural notion of spatial locality, i.e., one cannot simply pool together all nodes in a   

“m × m patch” on a graph.

• Main contributions:
Ø Propose DIFFPOOL that can generate hierarchical representations of graphs;

Ø DIFFPOOL can be combined with various graph neural network architectures in an end-to-end fashion;



Thanks for your attention!


