

How powerful are graph neural networks?

Authors: Keyulu Xu*, Weihua Hu*, Jure Leskovec, Stefanie Jegelka

Speaker: Ziyuan Ye (叶梓元) Monday, May 23, 2022

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018, September). How Powerful are Graph Neural Networks?. In *International Conference on Learning Representations (ICLR)*.

About the authors

Name	Organization	Research Interests	Other representative publications			
Keyulu Xu	MIT	Graph Neural Networks, Deep Learning	 Representation learning on graphs with jumping knowledge networks What Can Neural Networks Reason About? 			
Weihua Hu	Standford	Machine Learning, Deep Learning	1. Open Graph Benchmark: Datasets for Machine Learning on Graphs			
Jure Leskovec	Standford	Data mining, Machine Learning, Graph Neural Networks	 node2vec: Scalable feature learning for networks Inductive representation learning on large graphs SNAP Datasets: Stanford large network dataset collection 			
Stefanie Jegelka	MIT	Machine Learning, Optimization, Submodularity	 Max-value entropy search for efficient Bayesian optimization Deep metric learning via lifted structured feature embedding 			

- 1. Take-home message
- 2. Background
- 3. Research content
- 4. Experimental results
- 5. Future work

- 1. Take-home message
- 2. Background
- 3. Research content
- 4. Experimental results
- 5. Future work

Take-home Message

Southern University of science and techno

• Motivation:

- Despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations.
- Can GNNs have as large discriminative power as the Weisfeiler-Lehman (WL) test if the GNN's aggregation scheme is highly expressive and can model injective functions?

• Main contributions:

- > They show that GNNs are at most as powerful as the WL test in distinguishing graph structures.
- They develop Graph Isomorphism Network (GIN), and show that its discriminative power is equal to the power of the WL test.

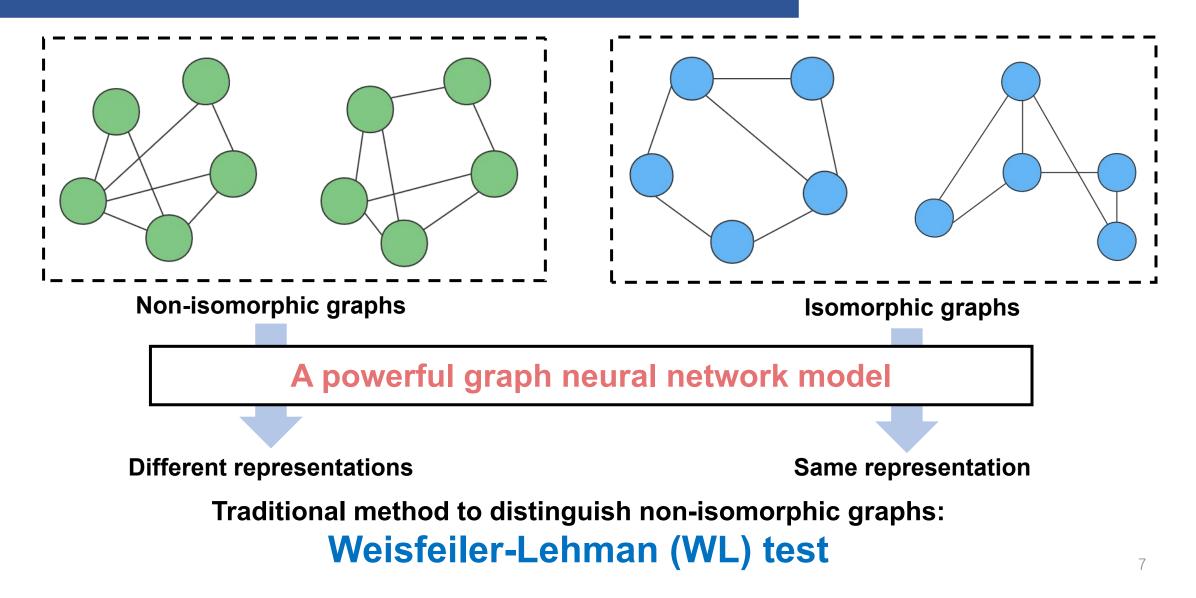
• Future work:

Go beyond neighborhood aggregation (message passing) to pursue more powerful message passing ways.

GNN: Graph neural network

- 1. Take-home message
- 2. Background
- 3. Research content
- 4. Experimental results
- 5. Future work

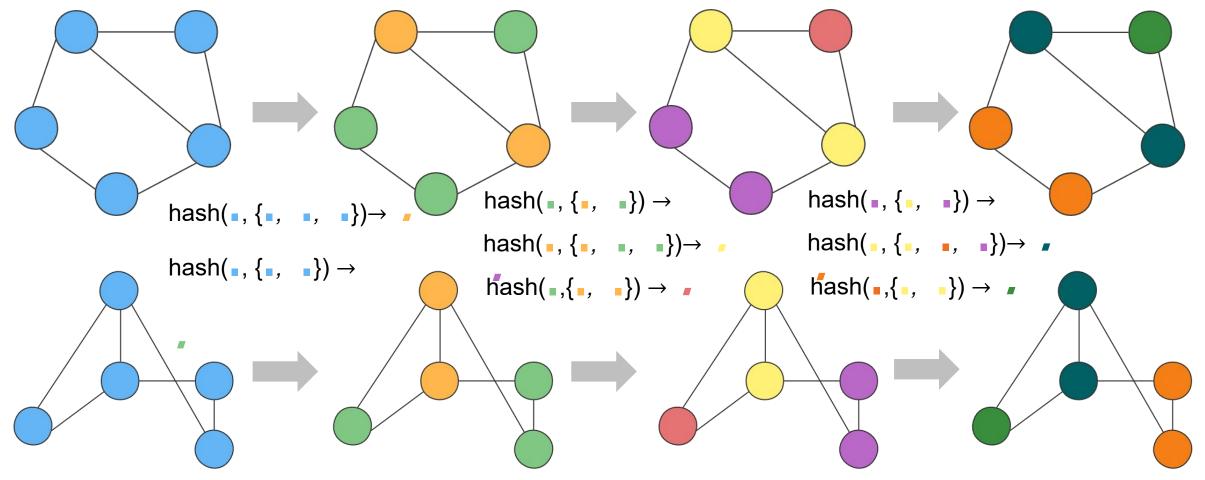
How to define a powerful GNN?



What is Weisfeiler-Lehman (WL) test?

The algorithm stops upon reaching a stable coloring

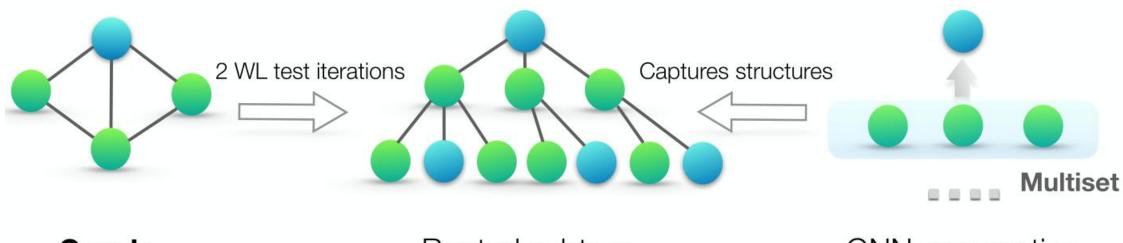
8



Adapted from *Michael Bronstein* blog: https://resources.experfy.com/ai-ml/expressive-power-graph-neural-networks-weisfeiler-lehman/

- 1. Take-home message
- 2. Background
- 3. Research content
- 4. Experimental results
- 5. Future work

An overview of the framework



Graph

Rooted subtree

GNN aggregation

If GNN aggregation can capture the *full multiset* of node neighbors, whether there exist GNNs that are as powerful as the WL test?

If the neighbor aggregation and graph-level readout functions are injective, then the resulting GNN is as powerful as the WL test.

Building powerful GNN

A powerful GNN should hold the following two condition:

(a)
$$h_v^{(k)} = \phi\left(h_v^{(k-1)}, f\left(\left\{h_u^{(k-1)} : u \in \mathcal{N}(v)\right\}\right)\right)$$

f(·) which operates on multiset, and \emptyset are injective.
(b) GNN's graph-level readout, which operates on the multiset of node features $\{h_v^{(k)}\}$, is injective.

An important corollary:

Assume \mathcal{X} is countable. There exists a function $f: \mathcal{X} \to \mathbb{R}^n$ so that for infinitely many choices of ϵ , including all irrational numbers, $h(c, X) = (1 + \epsilon) \cdot f(c) + \sum_{x \in X} f(x)$ is unique for each pair (c, X), where $c \in \mathcal{X}$ and $X \subset \mathcal{X}$ is a multiset of bounded size. Any multiset function g can be decomposed as $g(c, X) = \phi((1 + \epsilon) \cdot f(c) + \sum_{x \in X} f(x))$ for some function ϕ .

Building powerful GNN

An important corollary:

Assume \mathcal{X} is countable. There exists a function $f: \mathcal{X} \to \mathbb{R}^n$ so that for infinitely many choices of ϵ , including all irrational numbers, $h(c, X) = (1 + \epsilon) \cdot f(c) + \sum_{x \in X} f(x)$ is unique for each pair (c, X), where $c \in \mathcal{X}$ and $X \subset \mathcal{X}$ is a multiset of bounded size. Any multiset function g can be decomposed as $g(c, X) = \phi((1 + \epsilon) \cdot f(c) + \sum_{x \in X} f(x))$ for some function ϕ .

Universal approximation theorem

Universal approximation theorem imply that neural networks (e.g. multi-layer perceptron, MLP) can *represent* a wide variety of interesting functions when given appropriate weights.

Graph Isomorphic Network (GIN):

Sum aggregators + MLP to model $f^{(k+1)} \circ \phi^{(k)}$

Comparison of different models

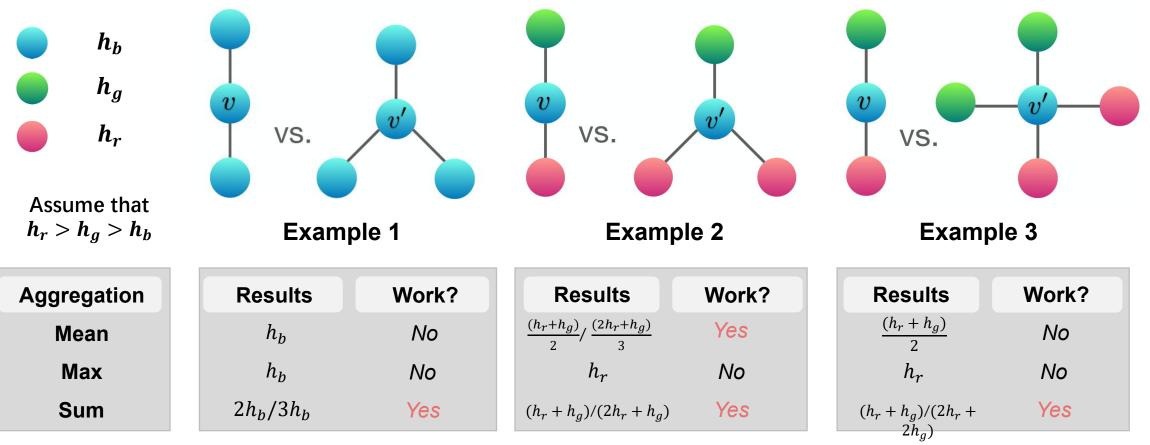
Model	Α	gregate functions	Update functions					
GCN	$h_{v}^{(k)} = \operatorname{ReLU}\left(W \cdot \operatorname{MEAN}\left\{h_{u}^{(k-1)}, \ \forall u \in \mathcal{N}(v) \cup \{v\}\right\}\right)$							
GraphSAGE	$a_v^{(k)} = \text{MAX}\left(\left\{\text{ReLU}\left(W \cdot h_u^{(k-1)}\right), \forall u \in \mathcal{N}(v)\right\}\right) h_v^{(k)} = \text{COMBINE}^{(k)}\left(h_v^{(k-1)}, a_v^{(k)}\right)$							
GIN	$h_v^{(k)} = \mathrm{MLP}^{(k)} \left(\left(1 + \epsilon^{(k)} \right) \cdot h_v^{(k-1)} + \sum_{u \in \mathcal{N}(v)} h_u^{(k-1)} \right)$							
		Traditional representations	Representations by GIN					
Node Classification	Node representation	$h_v^{(K)}$	$h_v^{(K)}$					
Graph Classification	Graph representation	$h_G = \operatorname{READOUT}\left(\left\{h_v^{(K)} \mid v \in G\right\}\right)$	$h_{G} = \text{CONCAT}\left(\text{READOUT}\left(\left\{h_{v}^{(k)} \middle v \in G\right\}\right)\right $ k = 0,1,, K)					

For GraphSAGE, these slides only provide *pooling* aggregator, the *mean* and *LSTM* aggregators are ignored for simplicity.

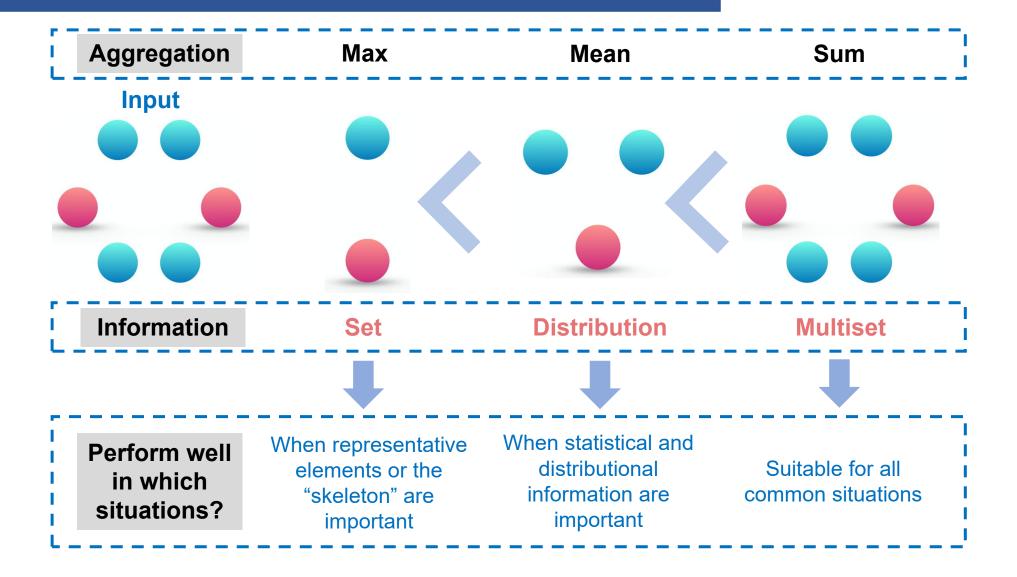
- 1. Take-home message
- 2. Background
- 3. Research content
- 4. Experimental results
- 5. Future work

Aggregation: Mean or Max or Sum?

Does these aggregation functions work for distinguishing the non-isomorphic graph in the following examples?



Aggregation: Mean or Max or Sum?



1-layer perceptron is sufficient?

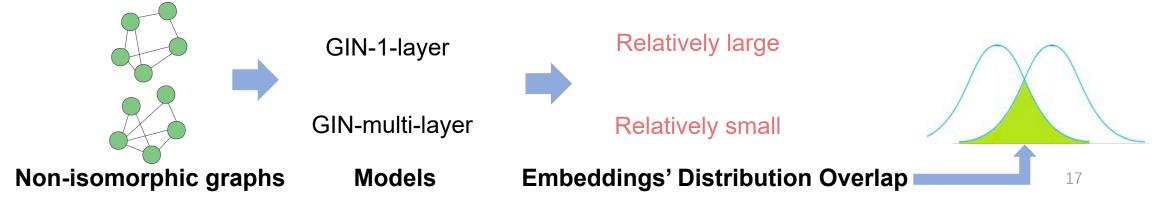
An important Lemma:

There exist finite multisets $X_1 \neq X_2$ so that for any linear mapping W, $\sum_{x \in X_1} ReLU(Wx) = \sum_{x \in X_2} ReLU(WX)$

Unlike models using MLPs, the 1-layer perceptron (even with the bias term) is *not a universal approximator* of multiset functions.

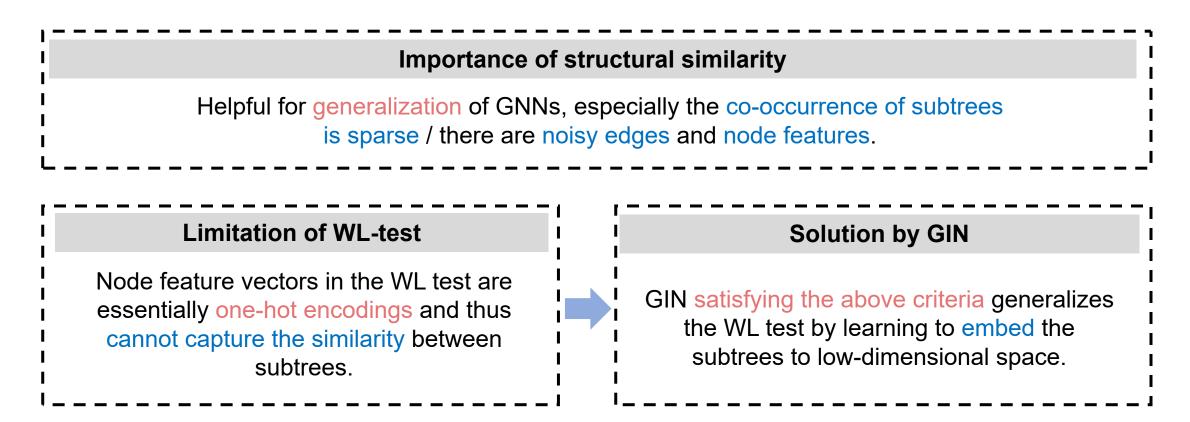
Answer to the question:

Not sufficient enough. Even if GNNs with 1-layer perceptron can embed different graphs to different locations to some degree, such embeddings may not adequately capture structural similarity, and can be difficult for simple classifiers, e.g., linear classifiers, to fit.



Benefit of GIN beyond WL-test

Capturing similarity of graph structures.

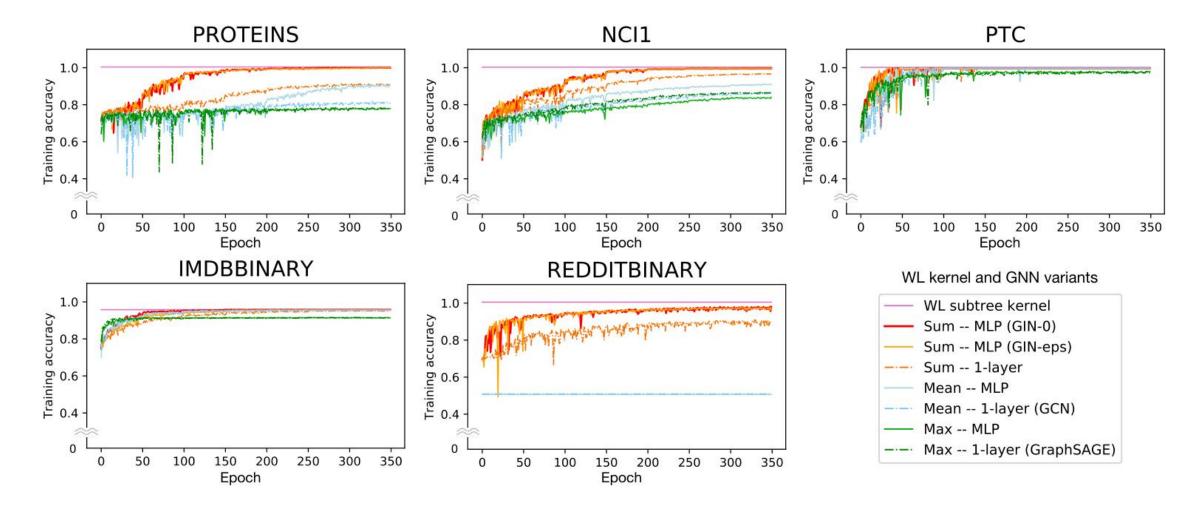


Test set classification accuracies

	Detreets	IMDD D	IMDD M	DDTD	DDT MEV	COLLAD	MUTAC	DROTEINS	DTC	NCU
~	Datasets	IMDB-B	IMDB-M	RDT-B	RDT-M5K	COLLAB	MUTAG	PROTEINS	PTC	NCI1
Datasets	# graphs	1000	1500	2000	5000	5000	188	1113	344	4110
	# classes	2	3	2	5	3	2	2	2	2
	Avg # nodes	19.8	13.0	429.6	508.5	74.5	17.9	39.1	25.5	29.8
es	WL subtree	73.8 ± 3.9	50.9 ± 3.8	81.0 ± 3.1	52.5 ± 2.1	78.9 ± 1.9	90.4 ± 5.7	75.0 ± 3.1	59.9 ± 4.3	86.0 \pm 1.8 *
	DCNN	49.1	33.5			52.1	67.0	61.3	56.6	62.6
elin	PATCHYSAN	71.0 ± 2.2	45.2 ± 2.8	86.3 ± 1.6	49.1 ± 0.7	72.6 ± 2.2	92.6 \pm 4.2 *	75.9 ± 2.8	60.0 ± 4.8	78.6 ± 1.9
Baselin	DGCNN	70.0	47.8	10		73.7	85.8	75.5	58.6	74.4
	AWL	74.5 ± 5.9	51.5 ± 3.6	87.9 ± 2.5	54.7 ± 2.9	73.9 ± 1.9	87.9 ± 9.8	—	—	—
its	SUM-MLP (GIN-0)	$\textbf{75.1} \pm \textbf{5.1}$	$\textbf{52.3} \pm \textbf{2.8}$	$\textbf{92.4} \pm \textbf{2.5}$	$\textbf{57.5} \pm \textbf{1.5}$	$\textbf{80.2} \pm \textbf{1.9}$	$\textbf{89.4} \pm \textbf{5.6}$	$\textbf{76.2} \pm \textbf{2.8}$	$\textbf{64.6} \pm \textbf{7.0}$	$\textbf{82.7} \pm \textbf{1.7}$
	SUM-MLP (GIN- ϵ)	$\textbf{74.3} \pm \textbf{5.1}$	$\textbf{52.1} \pm \textbf{3.6}$	$\textbf{92.2} \pm \textbf{2.3}$	$\textbf{57.0} \pm \textbf{1.7}$	$\textbf{80.1} \pm \textbf{1.9}$	$\textbf{89.0} \pm \textbf{6.0}$	$\textbf{75.9} \pm \textbf{3.8}$	63.7 ± 8.2	$\textbf{82.7} \pm \textbf{1.6}$
uriants	SUM-1-LAYER	74.1 ± 5.0	$\textbf{52.2} \pm \textbf{2.4}$	90.0 ± 2.7	55.1 ± 1.6	$\textbf{80.6} \pm \textbf{1.9}$	$\textbf{90.0} \pm \textbf{8.8}$	$\textbf{76.2} \pm \textbf{2.6}$	63.1 ± 5.7	82.0 ± 1.5
V Va	MEAN-MLP	73.7 ± 3.7	$\textbf{52.3} \pm \textbf{3.1}$	50.0 ± 0.0	20.0 ± 0.0	79.2 ± 2.3	83.5 ± 6.3	75.5 ± 3.4	$\textbf{66.6} \pm \textbf{6.9}$	80.9 ± 1.8
GNN	MEAN-1-LAYER (GCN)	74.0 ± 3.4	51.9 ± 3.8	50.0 ± 0.0	20.0 ± 0.0	79.0 ± 1.8	85.6 ± 5.8	76.0 ± 3.2	64.2 ± 4.3	80.2 ± 2.0
	MAX-MLP	73.2 ± 5.8	51.1 ± 3.6		-	(, .)	84.0 ± 6.1	76.0 ± 3.2	64.6 ± 10.2	77.8 ± 1.3
	MAX-1-LAYER (GraphSAGE)	72.3 ± 5.3	50.9 ± 2.2	8 1 - 1 5	i ou ni	20-22	85.1 ± 7.6	75.9 ± 3.2	63.9 ± 7.7	77.7 ± 1.5

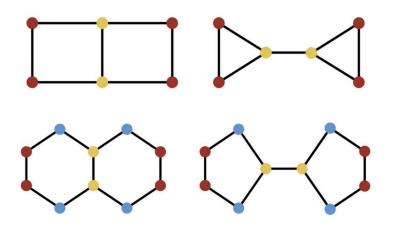
 $h_v^{(k)} = \mathrm{MLP}^{(k)} \left(\left(1 + \epsilon^{(k)} \right) \cdot h_v^{(k-1)} + \sum_{u \in \mathcal{N}(v)} h_u^{(k-1)} \right)$

Training set performance



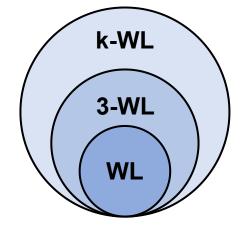
- 1. Take-home message
- 2. Background
- 3. Research content
- 4. Experimental results
- 5. Future work

Limitation of GIN



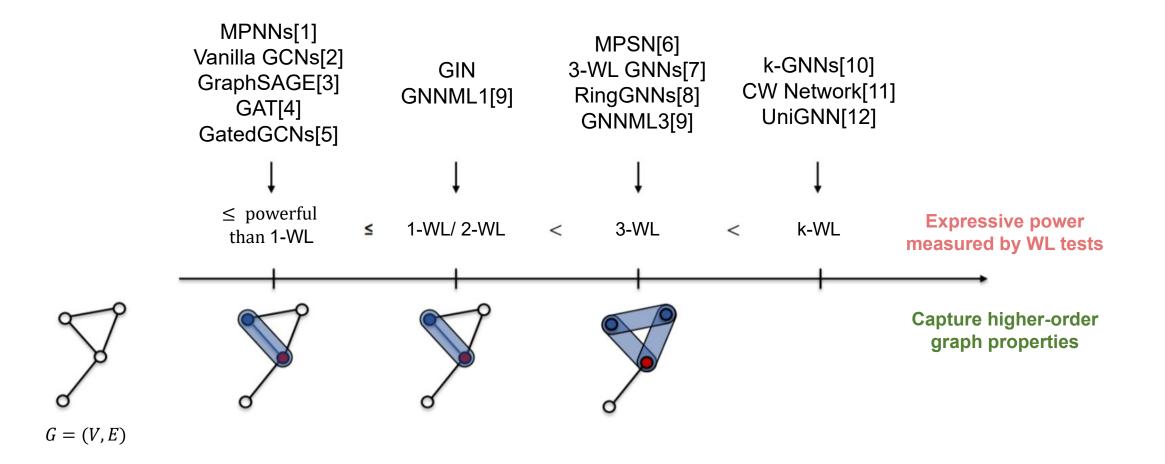
GIN fails to distinguish the higher-order structures

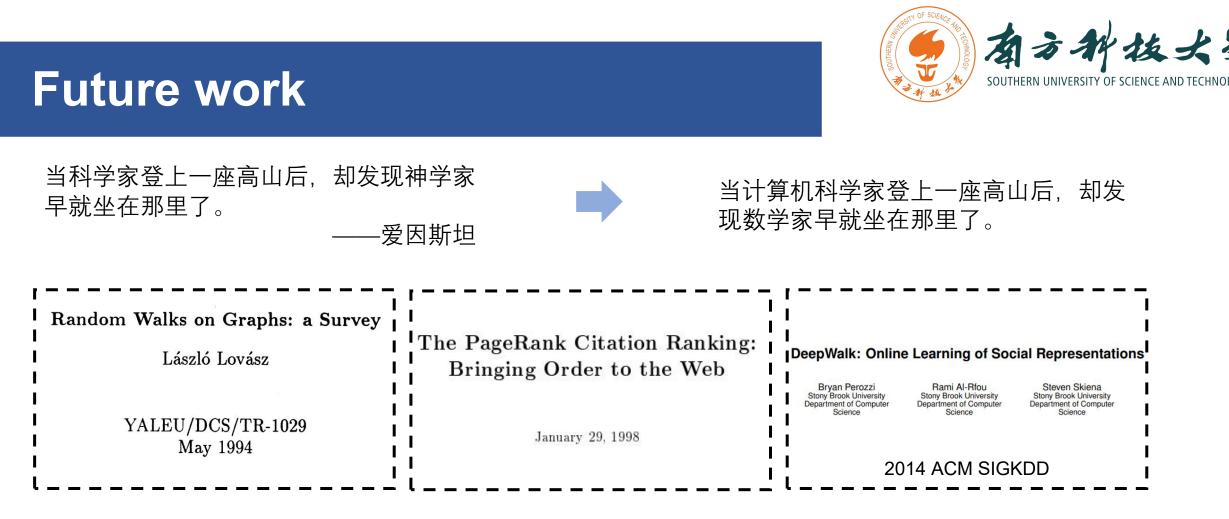
GIN fails to capture long-range interactions



GIN fails to break through WL

Future work





"It is a natural and powerful method to study discrete structures by 'embedding' them in the continuous world"

——Laszlo Lovasz

Reference

- Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017, July). Neural message passing for quantum chemistry. In International conference on machine learning (pp. 1263-1272). PMLR.
- 2. Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. *arXiv preprint arXiv:1609.02907*.
- Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30.
- 4. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. *arXiv preprint arXiv:1710.10903*.
- 5. Li, Y., Tarlow, D., Brockschmidt, M., & Zemel, R. (2015). Gated graph sequence neural networks. *arXiv* preprint arXiv:1511.05493.
- Bodnar, C., Frasca, F., Wang, Y., Otter, N., Montufar, G. F., Lio, P., & Bronstein, M. (2021, July). Weisfeiler and lehman go topological: Message passing simplicial networks. In *International Conference on Machine Learning* (pp. 1026-1037). PMLR.

Reference

- 7. Maron, H., Ben-Hamu, H., Serviansky, H., & Lipman, Y. (2019). Provably powerful graph networks. *Advances in neural information processing systems*, *32*.
- 8. Chen, Z., Villar, S., Chen, L., & Bruna, J. (2019). On the equivalence between graph isomorphism testing and function approximation with gnns. *Advances in neural information processing systems*, 32.
- Balcilar, M., Héroux, P., Gauzere, B., Vasseur, P., Adam, S., & Honeine, P. (2021, July). Breaking the limits of message passing graph neural networks. In *International Conference on Machine Learning* (pp. 599-608). PMLR.
- Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., & Grohe, M. (2019, July). Weisfeiler and leman go neural: Higher-order graph neural networks. In *Proceedings of the AAAI conference on artificial intelligence* (Vol. 33, No. 01, pp. 4602-4609).
- 11. Bodnar, C., Frasca, F., Otter, N., Wang, Y. G., Liò, P., Montufar, G. F., & Bronstein, M. (2021). Weisfeiler and lehman go cellular: Cw networks. *Advances in Neural Information Processing Systems*, *34*.
- 12. Huang, J., & Yang, J. (2021). UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence

Thanks for your attention!

Appendix

Definition 1 (Multiset). A multiset is a generalized concept of a set that allows multiple instances for its elements. More formally, a multiset is a 2-tuple X = (S, m) where S is the *underlying set* of X that is formed from its *distinct elements*, and $m : S \to \mathbb{N}_{>1}$ gives the *multiplicity* of the elements.

Lemma 2. Let G_1 and G_2 be any two non-isomorphic graphs. If a graph neural network $\mathcal{A} : \mathcal{G} \to \mathbb{R}^d$ maps G_1 and G_2 to different embeddings, the Weisfeiler-Lehman graph isomorphism test also decides G_1 and G_2 are not isomorphic.

Theorem 3. Let $\mathcal{A} : \mathcal{G} \to \mathbb{R}^d$ be a GNN. With a sufficient number of GNN layers, \mathcal{A} maps any graphs G_1 and G_2 that the Weisfeiler-Lehman test of isomorphism decides as non-isomorphic, to different embeddings if the following conditions hold:

a) A aggregates and updates node features iteratively with

$$h_v^{(k)} = \phi\left(h_v^{(k-1)}, f\left(\left\{h_u^{(k-1)} : u \in \mathcal{N}(v)\right\}\right)\right),$$

where the functions f, which operates on multisets, and ϕ are injective.

b) A's graph-level readout, which operates on the multiset of node features $\{h_v^{(k)}\}$, is injective.

Appendix

Lemma 4. Assume the input feature space \mathcal{X} is countable. Let $g^{(k)}$ be the function parameterized by a GNN's k-th layer for k = 1, ..., L, where $g^{(1)}$ is defined on multisets $X \subset \mathcal{X}$ of bounded size. The range of $g^{(k)}$, i.e., the space of node hidden features $h_v^{(k)}$, is also countable for all k = 1, ..., L.

Lemma 5. Assume \mathcal{X} is countable. There exists a function $f : \mathcal{X} \to \mathbb{R}^n$ so that $h(X) = \sum_{x \in X} f(x)$ is unique for each multiset $X \subset \mathcal{X}$ of bounded size. Moreover, any multiset function g can be decomposed as $g(X) = \phi(\sum_{x \in X} f(x))$ for some function ϕ .

Corollary 6. Assume \mathcal{X} is countable. There exists a function $f : \mathcal{X} \to \mathbb{R}^n$ so that for infinitely many choices of ϵ , including all irrational numbers, $h(c, X) = (1 + \epsilon) \cdot f(c) + \sum_{x \in X} f(x)$ is unique for each pair (c, X), where $c \in \mathcal{X}$ and $X \subset \mathcal{X}$ is a multiset of bounded size. Moreover, any function g over such pairs can be decomposed as $g(c, X) = \varphi \left((1 + \epsilon) \cdot f(c) + \sum_{x \in X} f(x) \right)$ for some function φ .

Appendix

Lemma 7. There exist finite multisets $X_1 \neq X_2$ so that for any linear mapping W, $\sum_{x \in X_1} \operatorname{ReLU}(Wx) = \sum_{x \in X_2} \operatorname{ReLU}(Wx)$.

Corollary 8. Assume \mathcal{X} is countable. There exists a function $f : \mathcal{X} \to \mathbb{R}^n$ so that for $h(X) = \frac{1}{|X|} \sum_{x \in X} f(x)$, $h(X_1) = h(X_2)$ if and only if multisets X_1 and X_2 have the same distribution. That is, assuming $|X_2| \ge |X_1|$, we have $X_1 = (S, m)$ and $X_2 = (S, k \cdot m)$ for some $k \in \mathbb{N}_{\ge 1}$.

Corollary 9. Assume \mathcal{X} is countable. Then there exists a function $f : \mathcal{X} \to \mathbb{R}^{\infty}$ so that for $h(X) = \max_{x \in X} f(x)$, $h(X_1) = h(X_2)$ if and only if X_1 and X_2 have the same underlying set.