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Take-home Message

 Motivation:

» Despite GNNs revolutionizing graph representation learning, there is limited understanding of their

representational properties and limitations.

» Can GNNs have as large discriminative power as the Weisfeiler-Lehman (WL) test if the GNN’s
aggregation scheme is highly expressive and can model injective functions?
* Main contributions:
» They show that GNNs are at most as powerful as the WL test in distinguishing graph structures.
» They develop Graph Isomorphism Network (GIN), and show that its discriminative power is equal to
the power of the WL test.
* Future work:

» Go beyond neighborhood aggregation (message passing) to pursue more powerful message
passing ways.

GNN: Graph neural network
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Non-isomorphic graphs Isomorphic graphs

A powerful graph neural network model

Different representations Same representation

Traditional method to distinguish non-isomorphic graphs:

Weisfeiler-Lehman (WL) test !
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The algorithm stops upon
reaching a stable coloring

hash(:, {:, :}) - )i hash(., { 'i
10 ’ )_’ o I

hash(., {:, -, } hash(
} - hash(.

Adapted from Michael Bronstein blog: https://resources.experfy.com/ai-ml/expressive-power-graph-neural-networks-weisfeiler-lehman/
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-
Captures structures
S 00 @
. ‘ Multiset

2 WL test iterations A\
P

Graph Rooted subtree GNN aggregation
If GNN aggregation can capture the If the neighbor aggregation and

full multiset of node neighbors, graph-level readout functions
whether there exist GNNs that are are injective, then the resulting

as powerful as the WL test? GNN is as powerful as the WL test.

10
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(a) : hk = ¢ (hgc—l),f ({hg“'_l) - N(v)})) !
: () which operates on multiset, and  are injective. i

®) T |
|

i GNN’s graph-level readout, which operates on the multiset of node features { ( )}, is injective.

An important corollary:

Assume is countable. There exists a function : - so that for infinitely many choices of
including all irrational numbers, (, )=0Q+ ) ()+ ( ) is unique for each pair ( , ), where
and is a multiset of bounded size. Any multiset function  can be decomposed as

(,)= ((1+) ()+ ( )) for some function

11
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An important corollary:

Assume is countable. There exists a function : - so that for infinitely many choices of
including all irrational numbers, (, )=(Q+ ) ()+ ( ) is unique for each pair ( , ), where
and is a multiset of bounded size. Any multiset function  can be decomposed as

(,)= @@+ ) ()+ ( )) for some function

Universal approximation theorem

Universal approximation theorem imply that neural networks (e.g. multi-layer perceptron, MLP)
can represent a wide variety of interesting functions when given appropriate weights.

Graph Isomorphic Network (GIN):
Sum aggregators + MLP to model (*) ()

12
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Traditional representations Representations by GIN
Node Node (K) : (K) ;
Classification ,' representation hy I Ao :

Graph Graph

_ (K) I
Classification representation he = READOUT({hv ‘ v C G}) |

For GraphSAGE, these slides only provide pooling aggregator, the mean and LSTM aggregators are ignored for simplicity.
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Aggregation: Mean or Max or Sum? RSttt

Does these aggregation functions work for distinguishing the non-isomorphic graph in the following
examples?

o Y ¢ % ¢ % 9

- ?vs PanN fvs /i\ Ivs.. I ¢

Assume that

= = Example 1 Example 2 Example 3
Aggregation Results Work? Results Work? Results Work?
Mean No ( . ), & — ) Yes ( ; ) No
Max No No No
Sum 2 /3 Yes ( + Y2 + ) Yes ( + )e + Yes

2)
15
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Aggregation: Mean or Max or Sum? RS ittt

- I
: Perform well  When representative  When statistical and | |
I in which elements or the distributional Suitable for all I
: . : o “skeleton” are information are common situations |
,  Situations? important important :

16
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An important Lemma:

There exist finite multisets ; # , so that for any linear mapping ( )= ¢ )

Unlike models using MLPs, the 1-layer perceptron (even with the bias term) is not a universal
approximator of multiset functions.

Answer to the question:

Not sufficient enough. Even if GNNs with 1-layer perceptron can embed different graphs to different
locations to some degree, , and can be
difficult for simple classifiers, e.g., linear classifiers, to fit.

@ GIN-1-layer Relatively large A~

GIN-multi-layer Relatively small sy W

Non-isomorphic graphs Models Embeddings’ Distribution Overlap 17
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Importance of structural similarity

Helpful for generalization of GNNs, especially the co-occurrence of subtrees
Is sparse / there are noisy edges and node features.

Limitation of WL-test Solution by GIN

Node feature vectors in the WL test are
essentially one-hot encodings and thus
cannot capture the similarity between
subtrees.

the WL test by learning to embed the

I |
I |

I I

: : GIN satisfying the above criteria generalizes
I I

I I subtrees to low-dimensional space.

I I

18



Test set classification accuracies

Datasets

Baselines

GNN variants
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Datasets IMDB-B IMDB-M RDT-B RDT-M5K COLLAB MUTAG PROTEINS PTC NCII

# graphs 1000 1500 2000 5000 5000 188 g 344 4110

# classes 2 3 2 5 3 2 2 2 2
Avg # nodes 19.8 13.0 429.6 508.5 74.5 17.9 39.1 25.5 29.8
WL subtree 738439 509438 RBlO0£31 5254240 FEIZLS 904£57 75.0 & 3.1 599+43 860+18"
DCNN 49.1 33.5 - - 52.1 67.0 61.3 56.6 62.6
PATCHYSAN 710122 452+28 863116 491107 726122 926+42* 759128 60.0 £ 4.8 78.6 = 1.9
DGCNN 70.0 47.8 - - 137 85.8 755 58.6 74.4
AWL 45+59 B15+36 879+25 H4T7+29 T39=x18 S791+98 - — -
SuM-MLP (GIN-0) 751 +£51 523+28 924+25 575+15 802+19 894+56 76.2 + 2.8 64.6 -7.0 827+ 1.7
SuM-MLP (GIN-¢) 743 £51 521+£3.6 922+23 57017 80.1+19 89.0=6.0 759 + 3.8 63.7+£82 827+L1.6
SUM-1-LAYER 74.1+50 522+24 900+27 551+16 80.6+19 90.0+88 76.2 + 2.6 631 57 820+ 1.5
MEAN-MLP 73.7+37 523+31 500+00 200+00 792+23 8354463 755+ 34 66.6 +6.9 809+ 1.8
MEAN-1-LAYER (GCN) 740+34 519+38 50000 20000 790+18 856=£58 76.0 £ 3.2 64.2 £43 80.2 £2.0
Max-MLP 732458 BlL1ESS - - - 84.0 + 6.1 760+32 646+102 77.8+1.3
MAX-1-LAYER (GraphSAGE) 723 +5.3 509 +2.2 - - - 85.1+76 759+ 32 63977 T17x15

h®) = MLP®) (1 +e(k)) RN

(k—1)

u

19



Training set performance

Training accuracy

Training accuracy

PROTEINS

Training accuracy

Training accuracy
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150 200 250 300 350

Epoch

100

WL kernel and GNN variants

WL subtree kernel
Sum -- MLP (GIN-0)
Sum -- MLP (GIN-eps)
Sum -- 1-layer

Mean -- MLP
Mean -- 1-layer (GCN)
Max -- MLP

Max -- 1-layer (GraphSAGE)

20
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GIN fails to distinguish the GIN fails to capture long-range
higher-order structures interactions

GIN fails to break through WL

22
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MPNNsI1] MPSNI[6]
\gn'”ﬁgA%N;[?)Z] GIN 3-WL GNNs[7]  k-GNNSs[10]
ra% ATI4] 3] GNNML1[9] RingGNNs[8]  CW Network[11]
UniGNN[12
GatedGCNSs[5] GNNML3[9] 1l
< ful i
LWL S TWU2WL < 3WL < kWL Expressive power

measured by WL tests

| | [l |
T >

Capture higher-order
graph properties

23
Adapted from Xavier Bresson’s slides



@ 3!5‘4%&%%

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

éﬂ“?’ét—@%m}ﬁ, &P F 5K

/\ o ,&Ll
% /Hﬁ_iﬂ f)béi :I:T%KET [¢]
l_________________lI_________________Il _________________ |
: Random Walks on Graphs: a Survey | ! I : I
| ; ; A .
| Laszlé Lovasz : | Th%?ag?Ragk (?lt itlil; R‘E;]l::l'ng. : | DeepWalk: Online Learning of Social Hepresentations:
ringin raer to e e

: I : g g I : SlaE;yBafgoFk'?_.lrﬂoi\%:risily StonnyaEli-?(i}c:I‘(II__m\?eLrlsity Stc?w;egfeanoksﬁriﬁfg?sity I
I I Depattm;gte?;(elomputer Depaﬂm;giten:‘f;:gomputer Departmggite?‘lfcgomputer I

' YALEU/DCS/TR-1029 ' | :
| h/{ay 19/94 : I January 29, 1998 : [ :
'l I 'l . 2014 ACM SIGKDD I

“It Is a natural and powerful method to study discrete structures by ‘embedding’ them in the continuous
world”
——laszlo Lovasz

24
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Definition 1 (Multiset). A multiset is a generalized concept of a set that allows multiple instances
for its elements. More formally, a multiset is a 2-tuple X = (S, m) where S is the underlying set of
X that is formed from its distinct elements, and m : S — N> gives the multiplicity of the elements.

Lemma 2. Let G and G5 be any two non-isomorphic graphs. If a graph neural network A : G — R

maps GG1 and G5 to different embeddings, the Weisfeiler-Lehman graph isomorphism test also decides
(G1 and G5 are not isomorphic.

Theorem 3. Let A : G — R? be a GNN. With a sufficient number of GNN layers, A maps any
graphs G1 and G5 that the Weisfeiler-Lehman test of isomorphism decides as non-isomorphic, to
different embeddings if the following conditions hold:

a) A aggregates and updates node features iteratively with

h® = ¢ (D, £ ({AE  ue N @) })),

where the functions f, which operates on multisets, and ¢ are injective.
;] . . k . . . .
b) A’s graph-level readout, which operates on the multiset of node features {hg, ) } is injective.

28
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Appendix

Lemma 4. Assume the input feature space X is countable. Let g\F) be the function parameterized by
a GNN’s k-th layer for k = 1, ..., L, where ¢V is defined on multisets X C X of bounded size. The

range of ¢\F), i.e., the space of node hidden features th"), is also countable for all k = 1, ..., L.

Lemma 5. Assume X is countable. There exists a function f : X — R" sothat h(X) = ) . f(x)
is unique for each multiset X C X of bounded size. Moreover, any multiset function g can be
decomposed as g (X) = ¢ (3 ,cx f(x)) for some function ¢.

Corollary 6. Assume X is countable. There exists a function f : X — R"™ so that for infinitely
many choices of ¢, including all irrational numbers, h(c,X) = (1 4+¢€) - f(c) + >, cx f(x) is
unique for each pair (¢, X ), where c € X and X C X is a multiset of bounded size. Moreover, any

function g over such pairs can be decomposed as g (¢, X) = ¢ (1 +¢€) - f(c) + > ,.cx f(x)) for
some function .

29
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Appendix

Lemma 7. There exist finite multisets X1 # Xs so that for any linear mapping W,
> zex, ReLU (Wz) =% _+ ReLU (Wx).

Corollary 8. Assume X is countable. There exists a function f : X — R"™ so that for h(X) =
ﬁ > wex f(x), h(X1) = h(X2) if and only if multisets X, and X, have the same distribution.

That is, assuming | Xo| > | X1|, we have X; = (S, m) and X9 = (S, k - m) for some k € N>;.

Corollary 9. Assume X is countable. Then there exists a function f : X — R so that for
h(X) = max,cx f(x), h(X1) = h(X3) if and only if X1 and X5 have the same underlying set.
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