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Take-home Message
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• Motivation: 
Ø Despite GNNs revolutionizing graph representation learning, there is limited understanding of their 

representational properties and limitations.

Ø Can GNNs have as large discriminative power as the Weisfeiler-Lehman (WL) test  if the GNN’s 

aggregation scheme is highly expressive and can model injective functions?

• Main contributions:
Ø They show that GNNs are at most as powerful as the WL test in distinguishing graph structures.

Ø They develop Graph Isomorphism Network (GIN), and show that its discriminative power is equal to 

the power of the WL test.

• Future work:
Ø Go beyond neighborhood aggregation (message passing) to pursue more powerful message 

passing ways.

GNN: Graph neural network 
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How to define a powerful GNN? 

7

Isomorphic graphs Non-isomorphic graphs

A powerful graph neural network model

Same representationDifferent representations

Traditional method to distinguish non-isomorphic graphs: 
Weisfeiler-Lehman (WL) test



What is Weisfeiler-Lehman (WL) test?
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hash(., {., ., .})→  .
hash(., {., .}) →
 .

hash(., {., ., .})→  .hash(., {., .}) →
 .

The algorithm stops upon 
reaching a stable coloring

hash(.,{., .}) →  . hash(., {., ., .})→  .hash(., {., .}) →
 .hash(.,{., .}) →  .

Adapted from Michael Bronstein blog: https://resources.experfy.com/ai-ml/expressive-power-graph-neural-networks-weisfeiler-lehman/
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An overview of the framework
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If GNN aggregation can capture the 
full multiset of node neighbors, 

whether there exist GNNs that are 
as powerful as the WL test?

If the neighbor aggregation and 
graph-level readout functions 

are injective, then the resulting 
GNN is as powerful as the WL test.



Building powerful GNN
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�(⋅) which operates on multiset, and ∅  are injective.

GNN’s graph-level readout, which operates on the multiset of node features {ℎ�
(�)}, is injective.

A powerful GNN should hold the following two condition:
(a)

(b)

An important corollary:
Assume � is countable. There exists a function �: � → ℝ� so that for infinitely many choices of �, 
including all irrational numbers, ℎ(�, �) = (1 + �) ⋅ �(�) +  �∈� �(�) is unique for each pair (�, �), where 
� ∈ � and �  ⊂ � is a multiset of bounded size.  Any multiset function � can be decomposed as 
�(�, �) = �((1 + �) ⋅ �(�) +  �∈� �(�) ) for some function �.
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Assume � is countable. There exists a function �: � → ℝ� so that for infinitely many choices of �, 
including all irrational numbers, ℎ(�, �) = (1 + �) ⋅ �(�) +  �∈� �(�) is unique for each pair (�, �), where 
� ∈ � and �  ⊂ � is a multiset of bounded size.  Any multiset function � can be decomposed as 
�(�, �) = �((1 + �) ⋅ �(�) +  �∈� �(�) ) for some function �.

An important corollary:

Universal approximation theorem imply that neural networks (e.g. multi-layer perceptron, MLP)  
can represent a wide variety of interesting functions when given appropriate weights.

Universal approximation theorem

Graph Isomorphic Network (GIN):

Sum aggregators + MLP to model �(�+�) ∘ �(�)

Building powerful GNN
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For GraphSAGE, these slides only provide pooling aggregator, the mean and LSTM aggregators are ignored for simplicity.  

Node 
Classification

Graph 
Classification

Node 
representation

Graph
representation

ℎ� = CONCAT  READOUT   hv
(�) � ∈ �   

k = 0,1, …, �)

GCN

GraphSAGE
  

Model Aggregate functions Update functions

GIN

Comparison of different models

Traditional representations Representations by GIN
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Aggregation

Mean
Max

Sum

��

��

��

Assume that 
�� > �� > ��

Results Work? Results Work? Results Work?
 ℎ�

 ℎ�

2ℎ�/3ℎ�

No

No

Yes

(ℎ�+ℎ�)
2

/ 
(2ℎ�+ℎ�)

3

 ℎ�

(ℎ� + ℎ�)/(2ℎ� + ℎ�)

Yes

No

Yes

(ℎ� + ℎ�)
2

ℎ�

(ℎ� + ℎ�)/(2ℎ� +
2ℎ�)

No

No

Yes

Example 1 Example 2 Example 3

Does these aggregation functions work for distinguishing the non-isomorphic graph in the following 
examples?

Aggregation: Mean or Max or Sum?
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Input

Set Distribution MultisetInformation

SumMeanMaxAggregation

Aggregation: Mean or Max or Sum?

Perform well 
in which 

situations?

When representative 
elements or the 
“skeleton” are 

important

When statistical and 
distributional 

information are 
important

Suitable for all 
common situations



1-layer perceptron is sufficient? 
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There exist finite multisets �1 ≠ �2 so that for any linear mapping �,  �∈�1
����(��) =  �∈�2

����(��)
An important Lemma:

Unlike models using MLPs, the 1-layer perceptron (even with the bias term) is not a universal 
approximator of multiset functions.

Not sufficient enough. Even if GNNs with 1-layer perceptron can embed different graphs to different 
locations to some degree, such embeddings may not adequately capture structural similarity, and can be 

difficult for simple classifiers, e.g., linear classifiers, to fit.

Answer to the question:

GIN-1-layer

GIN-multi-layer

Non-isomorphic graphs Embeddings’ Distribution Overlap

Relatively small

Relatively large

Models



Benefit of GIN beyond WL-test
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Node feature vectors in the WL test are 
essentially one-hot encodings and thus 
cannot capture the similarity between 

subtrees. 

Limitation of WL-test

GIN satisfying the above criteria generalizes 
the WL test by learning to embed the 
subtrees to low-dimensional space.

Solution by GIN

Importance of structural similarity 

Helpful for generalization of GNNs, especially the co-occurrence of subtrees 
is sparse / there are noisy edges and node features.

ØCapturing similarity of graph structures.



Test set classification accuracies
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Training set performance
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Limitation of GIN
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GIN fails to distinguish the 
higher-order structures

GIN fails to capture long-range 
interactions

WL

3-WL

k-WL

GIN fails to break through WL



Future work
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Adapted from Xavier Bresson’s slides

MPNNs[1]
Vanilla GCNs[2]
GraphSAGE[3]

GAT[4]
GatedGCNs[5]

GIN
GNNML1[9]

MPSN[6]
3-WL GNNs[7]
RingGNNs[8]
GNNML3[9]

k-GNNs[10]
CW Network[11]

UniGNN[12]

Expressive power 
measured by WL tests

Capture higher-order 
graph properties

� = (�, �)

≤  powerful 
than 1-WL 1-WL/ 2-WL 3-WL k-WL
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Future work
当科学家登上一座高山后，却发现神学家
早就坐在那里了。

——爱因斯坦

当计算机科学家登上一座高山后，却发
现数学家早就坐在那里了。

2014 ACM SIGKDD

“It is a natural and powerful method to study discrete structures by ‘embedding’ them in the continuous 
world”

      ——Laszlo Lovasz
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