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Key components and working mechanism of NCH:
• Neuron Models: Basic computational unit that mimics biological neurons

• Examples:
• Leaky Integrate-and-Fire (LIF)
• Izhikevich

• These models simulate the process by which a neuron produces a voltage change after 
receiving an input signal and generates an output signal (action potential) when a certain 
threshold is exceeded.

• Synapse:  A synapse is a connection between neurons that is responsible for transmitting signals 
from one neuron to another. In neuromorphic hardware, synapses can be realized with tunable 
resistors

• Examples:
• Patch diodes  (膜片二极管)
• Memristors (忆阻器)

• These resistors can be tuned according to the activity between neurons for learning and 
memory functions.



Key components and working mechanism of NCH:
• Learning rules: Neuromorphic computing hardware adapts and learns using learning rules based 

on local information
• Examples:

• Backpropagation (BP)
• Competitive learning
• Hebbian learning: fire together, wire together
• Spike-timing-dependent plasticity (STDP)

• These learning rule simulate the process by which a neuron produces a voltage change after 
receiving an input signal and generates an output signal (action potential) when a certain 
threshold is exceeded.

Neuromorphic Computing Hardware (NCH)
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Such weight transport is not possible in biology, as synapses are directional.
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BP & Its Limitations: Non-local plasticity
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BP cannot update each weight based only on the immediate activations of the two 
neurons that the weight connects

BP requires error signal

BP is Non-local in space and time

Locality is generally believed to 
govern biological synaptic plasticity

(Baldi et al. 2017)

I. Forward-passing variables must be memorized
II. Additional backward signals must be computed and 

propagated

BP is computational inefficiency



BP & Its Limitations: Update Locking
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 The error credited by BP to a synapse (weight) can only be computed after the 
information has propagated forward and then backward through the entire network.

Model

Input

Output

Loss
BackwardForward

Forward: Create a calculation graph to store the calculation process and intermediate results
Backward: Starting from the output of the calculation graph, the gradients are calculated and stored 
forward along each node in the graph

Time(forward) + Time(backward) Weight updates
determine

Update locking



Competition between Neurons
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Neurons express competition through competitive inhibition

Competitive inhibition
When a group of neurons is strongly stimulated, they suppress the activity of neighboring 
neurons, gaining more resources and optimizing their own performance

Winner-takes-all (WTA)

(Bienenstock et al. 1982) (Bao et al. 2020) (Lee et al. 2022)

(Hebb, D. O. 1949)
Important for Learning and Memory



Hebbian Plasticity Rule  & Its Variants
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Key idea: Co-activated neurons connect to each other

Δ��� = � ⋅ �� ��, ��� ⋅ ��

Hebbian plasticity rule

����: the weight update vector from neuron � to neuron �
� ��, ���  : the post-synaptic activation of the neuron
��: the vector of input signals
�: the learning rate coefficient

(Hebb, D. O. 1949)

Hebbian plasticity rule with weight decay
(Gerstner, W., & Kistler, W. M. 2002)Δ��� = � ⋅ � ��, ��� ⋅ �� − � ��, ��� 

Δ��� = � ⋅ � ��, ��� ⋅  �� − ��� (Haykin, S. 2009)

Post-synaptic activation of the neuron
�� = ���� ��� ⋅ �� 
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�: base
�: temperature
��:  the k-th neuron’s total weighted input
��:  output after accounting for competition from neurons
�: number of neurons in a layer
��: activation of neuron i

SoftHebb plasticity rule:  realizes a soft WTA competition through softmax

Δ���
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Negates SoftHebb’s weight update in all neurons except the maximally activated one



Training & Tricks
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Combination of activation functions
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Rectified polynomial unit (RePU) Triangle activation 
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Greedy layer-wise training
• Restricted Boltzmann Machines (RBM)
• Autoencoder

Neuron-wise adaptive learning rate
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SoftHebb Architecture
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SoftHebb Architecture



Content

17

• Introduction to Timoleon Moraitis

• Background

• SoftHebb

• Experiments

• Discussion



Dataset

18

MNIST

Fashion-MNIST
Class: 10; Labeled data: 6W Training, 1W Testing; Size: 28*28

Class: 10; Labeled data: 6W Training, 1W Testing; Size: 28*28
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CIFAR-10

STL-10

Labeled data: 5K Training, 8K Testing;  Unlabeled data: 10W;  Size: 96*96

Labeled data: 5W Training, 1W Testing; Size: 32*32
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20

CIFAR-100

ImageNet

Class: 2W+; Labeled data: 5K Training, 8K Testing;  Unlabeled data: 10W;  Size: 96*96

Class: 100; Labeled data: 5W Training, 1W Testing; Size: 32*32
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Architecture Analysis
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 CIFAR-10 layer-wise performanceSoftHebb Architecture



Depth-wise Performance
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Receptive Field Analysis
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Hard
WTA
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Hierarchical representations learned by SoftHebb on STL-10

UMAP 
projection
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