

Hebbian Deep Learning Without Feedback

Author: Adrien Journé, Hector Garcia Rodriguez, Qinghai Guo, Timoleon Moraitis*

Presenter: Ziyuan Ye

ICLR 2023 Notable-top-25%

Content

- Introduction to Timoleon Moraitis
- Background
- SoftHebb
- Experiments
- Discussion

Content

- Introduction to Timoleon Moraitis
- Background
- SoftHebb
- Experiments
- Discussion

Information about Timoleon Moraitis

	Timoleon Moraitis	引用次数				
	Croup Londor, Hugwai Tachpalagian, Zurich Pasaarah Captar				总计 20	018年至今
	在 huawei.com 的电子邮件经过验证 - <u>首页</u>			引用	946	876
LI LA	Neuro-AI & Biologically-pla Neuromorphic Computing Machine Learning	Neuroscience		h 指数	10	10
				i10 指数	10	10
Neuromorphic com	puting with multi-memristive synapses	555	2018			
Nature communications	s 9 (1), 2514					260
Bridging the gap: a	reticulo-propriospinal detour bypassing an incomplete spinal cord injury	159	2014			
L Filli, AK Engmann, B	Zörner, O Weinmann, T Moraitis, M Gullo, e 34 (40), 13399-13410					195
						130
A bidirectional brain F Boi*, T Moraitis*, V Do	n-machine interface featuring a neuromorphic hardware decoder e Feo*, F Diotalevi, C Bartolozzi, G Indiveri, A Vato	64	2016			
Frontiers in neurosciend	ce 10, 563					65
Phase-change mer	ntransistive synapses for mixed-plasticity neural computations	25 *	2022			
SG Sarwat, B Kersting, Nature Nanotechnology	T Moraitis, VP Jonnalagadda, A Sebastian / 17 (5), 507-513			2016 2017 2018 20	019 2020 2021 2022 2	2023 0
Stochastic weight u	indates in phase-change memory-based synapses and their influence on	22	2017			
artificial neural net	vorks		2017			
I Boybat, M Le Gallo, T 2017 13th Conference	Moraitis, Y Leblebici, A Sebastian, E Eleftheriou on Ph. D. Research in Microelectronics and Electronics					

Content

- Introduction to Timoleon Moraitis
- Background
- SoftHebb
- Experiments
- Discussion

Neuromorphic Computing Hardware (NCH)

Key components and working mechanism of NCH:

- Neuron Models: Basic <u>computational unit</u> that <u>mimics biological neurons</u>
 - Examples:
 - Leaky Integrate-and-Fire (LIF)
 - Izhikevich
 - These models simulate the process by which a neuron produces a voltage change after receiving an input signal and generates an output signal (action potential) when a certain threshold is exceeded.
- Synapse: A synapse is a connection between neurons that is responsible for <u>transmitting signals</u> from one neuron to another. In neuromorphic hardware, synapses can be realized with <u>tunable</u> resistors
 - Examples:
 - Patch diodes (膜片二极管)
 - Memristors (忆阻器)
 - These resistors can be tuned according to the activity between neurons for learning and memory functions.

Neuromorphic Computing Hardware (NCH)

Key components and working mechanism of NCH:

- Learning rules: Neuromorphic computing hardware <u>adapts</u> and <u>learns</u> using <u>learning rules</u> based on <u>local information</u>
 - Examples:
 - Backpropagation (BP)
 - Competitive learning
 - Hebbian learning: fire together, wire together
 - Spike-timing-dependent plasticity (STDP)
 - These learning rule simulate the process by which a neuron produces a voltage change after receiving an input signal and generates an output signal (action potential) when a certain threshold is exceeded.

BP & Its Limitations: Weight Transport

Such weight transport is not possible in biology, as synapses are directional.

BP & Its Limitations: Non-local plasticity

BP <u>cannot</u> update each weight based only on the immediate activations of the two neurons that the weight connects

BP & Its Limitations: Update Locking

The error credited by BP to a synapse (weight) can only be computed after the information has propagated forward and then backward through the <u>entire network</u>.

Forward: Create a calculation graph to store the <u>calculation process and intermediate results</u> **Backward:** Starting from the output of the calculation graph, the gradients are <u>calculated and stored</u> forward along each node in the graph

Competition between Neurons

Neurons express competition through competitive inhibition

Competitive inhibition

When a group of neurons is <u>strongly stimulated</u>, they <u>suppress</u> the activity of <u>neighboring</u> <u>neurons</u>, gaining more resources and optimizing their own performance

Winner-takes-all (WTA)

(Hebb, D. O. 1949) **Important for Learning and Memory** 1.0 F C Inanimate a_20000000000 0.8 SELECTIVITY RESPONSE 0.6 Stubby Spikv 0.4 Normalized alcium activity 0.2 Animate 0.0 200 400 600 800 1000 Θ Θ 0 15 min 15 min ORIENTATION (Bienenstock et al. 1982) (Lee et al. 2022) (Bao et al. 2020)

Hebbian Plasticity Rule & Its Variants

Key idea: Co-activated neurons connect to each other

Hebbian plasticity rule

 $\Delta \omega_{ik} = \eta \cdot y_k(x_i, \omega_{ik}) \cdot x_i \qquad (\text{Hebb, D. O. 1949})$

 $\Delta \omega_{ik}$: the weight update vector from neuron *i* to neuron *k* $y(x_i, \omega_{ik})$: the post-synaptic activation of the neuron x_i : the vector of input signals η : the learning rate coefficient

Post-synaptic activation of the neuron

 $y_k = ReLU(\omega_{ik} \cdot x_i)$

Hebbian plasticity rule with weight decay

 $\Delta \omega_{ik} = \eta \cdot y(x_i, \omega_{ik}) \cdot x_i - \gamma(x_i, \omega_{ik}) \quad \text{(Gerstner, W., \& Kistler, W. M. 2002)}$

$$\Delta \omega_{ik} = \eta \cdot y(x_i, \omega_{ik}) \cdot (x_i - \omega_{ik}) \quad (\text{Haykin, S. 2009})$$

Content

- Introduction to Timoleon Moraitis
- Background
- SoftHebb
- Experiments
- Discussion

SoftHebb

SoftHebb plasticity rule: realizes a soft WTA competition through softmax

$$y_{k} = \frac{b^{u_{k}}}{\sum_{l=1}^{K} b^{u_{l}}} = \frac{e^{\frac{u_{k}}{\tau}}}{\sum_{l=1}^{K} e^{\frac{u_{l}}{\tau}}}$$

b: base

 $\boldsymbol{\tau}$: temperature

 u_k : the k-th neuron's total weighted input

 y_k : output after accounting for competition from neurons

K: number of neurons in a layer

 x_i : activation of neuron i

$$\Delta \omega_{ik}^{(SoftHebb)} = \eta \cdot \frac{y_k}{y_k} \cdot (x_i - u_k \cdot \omega_{ik})$$

Negates SoftHebb's weight update in <u>all neurons</u> except the maximally activated one

Training & Tricks

Greedy layer-wise training

- Restricted Boltzmann Machines (RBM)
- Autoencoder

Combination of activation functions

Rectified polynomial unit (RePU)

$$RePU(u) = \begin{cases} u^p, & \text{for } u > 0\\ 0, & \text{for } u \le 0 \end{cases}$$

Neuron-wise adaptive learning rate

$$\begin{split} r_i &= E\left(\sqrt{\sum_{j=0}^{N_i} W_{ij}^2} \right) = \sqrt{N_i} \cdot E(|\omega_i|) \\ \eta_i &= \eta \cdot (r_i - 1)^q \end{split}$$

Triangle activation

$$Triangle(u_j) = RePU(u_j - \overline{u})$$

 N_i : number of synapses of neuron i r_i : radius of neuron i

 \boldsymbol{q} :hyperparameter

SoftHebb Architecture

# layer	MNIST/CIFAR	STL10	ImageNet
1	Batchnorm	Batchnorm	Batchnorm
	5×5 conv96	5×5 conv96	5×5 conv48
	Triangle	Triangle	Triangle
	4×4 MaxPool	4×4 MaxPool	4×4 MaxPool
2	Batchnorm	Batchnorm	Batchnorm
	3×3 conv384	3×3 conv384	3×3 conv192
	Triangle	Triangle	Triangle
	4×4 MaxPool	4×4 MaxPool	4×4 MaxPool
3	Batchnorm	Batchnorm	Batchnorm
	3×3 conv1536	3×3 conv1536	3×3 conv768
	Triangle	Triangle	Triangle
	2×2 AvgPool	4x4 MaxPool	4×4 MaxPool
4		Batchnorm 3×3 conv6144 Triangle 2×2 AvgPool	Batchnorm 3×3 conv3072 Triangle 4×4 MaxPool
5			Batchnorm 5×5 conv12288 Triangle 2×2 AvgPool

SoftHebb Architecture

Content

- Introduction to Timoleon Moraitis
- Background
- SoftHebb
- Experiments
- Discussion

Dataset

MNIST

93197245103243759034986680965(64454 30247948320135357468514169690142131 28232382498291391119966979422633316 6369036030/139315049687\0379918/722 338070569884144469533834206326/4063 17958043775054209812493520051939618 950051117477865/8241156523304385467

Class: 10; Labeled data: 6W Training, 1W Testing; Size: 28*28

Fashion-MNIST

Class: 10; Labeled data: 6W Training, 1W Testing; Size: 28*28

Dataset

CIFAR-10

Labeled data: 5W Training, 1W Testing; Size: 32*32

STL-10

Labeled data: 5K Training, 8K Testing; Unlabeled data: 10W; Size: 96*96

Dataset

CIFAR-100

Superclass	Classes	Superclass	Classes
aquatic mammals	beaver, dolphin, otter, seal, whale	large natural outdoor scenes	cloud, forest, mountain, plain, sea
fish	aquarium fish, flatfish, ray, shark, trout	large omnivores and herbivores	camel, cattle, chimpanzee, elephant, kangaroo
flowers	orchids, poppies, roses, sunflowers, tulips	medium-sized mammals	fox, porcupine, possum, raccoon, skunk
food containers	bottles, bowls, cans, cups, plates	non-insect invertebrates	crab, lobster, snail, spider, worm
fruit and vegetables	apples, mushrooms, oranges, pears, sweet peppers	people	baby, boy, girl, man, woman
household electrical devices	clock, computer keyboard, lamp, telephone, television	reptiles	crocodile, dinosaur, lizard, snake, turtle
household furniture	bed, chair, couch, table, wardrobe	small mammals	hamster, mouse, rabbit, shrew, squirrel
insects	bee, beetle, butterfly, caterpillar, cockroach	trees	maple, oak, palm, pine, willow
large carnivores	bear, leopard, lion, tiger, wolf	vehicles 1	bicycle, bus, motorcycle, pickup truck, train
large man-made outdoor things	bridge, castle, house, road, skyscraper	vehicles 2	lawn-mower, rocket, streetcar, tank, tractor

Class: 100; Labeled data: 5W Training, 1W Testing; Size: 32*32

ImageNet

Class: 2W+; Labeled data: 5K Training, 8K Testing; Unlabeled data: 10W; Size: 96*96

Comparison Results on CIFAR-10

	Qua	lities	5	Accuracy	Layers	Algorithm	Reference
				99.4	152	Backprop (cross-entropy)	Kolesnikov et al. 2020
				84.0	4	Backprop (cross-entropy)	Ours
				71.8	5	Feedback Alignment	Frenkel et al. 2021
				~ 60	6	Predictive Coding	Millidge et al. 2020
				13.4	5	Equilibrium Propagation (2-phase)	Laborieux et al. 2021
				78.5	5	EP (2-phase, random sign)	Laborieux et al. 2021
ree				79.9	5	Burstprop	Payeur et al. 2021
t-f				61.0	5	BurstCCN	Greedy et al. 2022
por				70.5	5	Direct Feedback Alignment	Frenkel et al. 2021
lsu				71.5	5	DFA (untrained convs)	Frenkel et al. 2021
tra	ity			65.6	5	Direct Random Target Projection	Frenkel et al. 2021
ht-	tic	_		69.0	5	DRTP (untrained convs)	Frenkel et al. 2021
eig	las	ked		73.1	5	Single Sparse DFA	Crafton et al. 2019
M	d b	loc		53.5	11	Latent Predictive Learning	Halvagal and Zenke 2022
	,0 C a	un-	bed	73.7	4	Self Organising Maps	Stuhr and Brauer 2019
	н	ate	rvis	72.2	2	Hard WTA	Grinberg et al. 2019
		Upd	adn	64.6	4	Hard WTA	Miconi 2021
			Uns	80.3	4	SoftHebb (1 epoch)	Ours

Architecture Analysis

SoftHebb Architecture

# layer	MNIST/CIFAR	STL10	ImageNet
1	Batchnorm	Batchnorm	Batchnorm
	5×5 conv96	5×5 conv96	5×5 conv48
	Triangle	Triangle	Triangle
	4×4 MaxPool	4×4 MaxPool	4×4 MaxPool
2	Batchnorm	Batchnorm	Batchnorm
	3×3 conv384	3×3 conv384	3×3 conv192
	Triangle	Triangle	Triangle
	4×4 MaxPool	4×4 MaxPool	4×4 MaxPool
3	Batchnorm	Batchnorm	Batchnorm
	3×3 conv1536	3×3 conv1536	3×3 conv768
	Triangle	Triangle	Triangle
	2×2 AvgPool	4x4 MaxPool	4×4 MaxPool
4		Batchnorm 3×3 conv6144 Triangle 2×2 AvgPool	Batchnorm 3×3 conv3072 Triangle 4×4 MaxPool
5			Batchnorm 5×5 conv12288 Triangle 2×2 AvgPool

CIFAR-10 layer-wise performance

Depth-wise Performance

Receptive Field Analysis

Figure 1: First successful multilayer results. Soft-Hebb's CIFAR-10 accuracy increases with depth (*hidden* layers), compared with prior work.

Figure B.5: Receptive fields of the first convolutional layer's neurons, learned from CIFAR-10 by different algorithms.

Representation Analysis

Hierarchical representations learned by SoftHebb on STL-10

Representation Analysis

Content

- Introduction to Timoleon Moraitis
- Background
- SoftHebb
- Experiments
- Discussion

Discussion

(A) Hard WTA

(B) SoftHebb

Gabor like Units

Color Units

28

e.

Other Units

Discussion

(Olah, et al. 2020)

Reference

- Hebb, D. O. (1949). The organization of behavior; a neuropsychological theory.
- Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. Journal of Neuroscience, 2(1), 32-48.
- Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: Single neurons, populations, plasticity.
 Cambridge university press.
- Haykin, S. (2009). Neural networks and learning machines, 3/E. Pearson Education India.
- Olah, et al. (2020). An Overview of Early Vision in InceptionV1. Distill.
- Bao, P., She, L., McGill, M., & Tsao, D. Y. (2020). A map of object space in primate inferotemporal cortex. Nature, 583(7814), 103-108.
- Lee, J. J., Krumin, M., Harris, K. D., & Carandini, M. (2022). Task specificity in mouse parietal cortex. Neuron, 110(18), 2961-2969.

Thanks for your attention!