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Characteristics of current ML models
• Multiple trends at current machine learning:

pWe have amounts of data, often from simulations or large scale human labeling
pWe use high capacity machine learning systems (complex function classes with many adjustable parameters)
pWe  employ high performance computer systems
p The problems are independent and identically distributed (i.i.d)

• Major challenge
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ML: machine learning; OOD: Out of distribution. 

Solutions

Much of the practice and most theoretical results fail to tackle the hard open problem of generalization across problem.

Is the i.i.d assumption reasonable 
for such statistical learning?
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• Cognitive Systems Lab
• CS Department, UCLA
• Turing Award Winner

Judea Pearl

7

To build truly intelligent machines, teach them cause and effect.
         ——Judea Pearl

3.Counterfactuals
Activity: Imaging, Retrospection, Understanding
Questions: What if I had done…? Why? (Was it � that caused �? What if � had not occurred?)
Examples: Was it the aspirin that stopped my headache? What if I had not smoked last year?

2.Intervention
Activity: Doing Intervening
Questions: What if I do…? How? (What would � be if I do � ? How can I make Y happen?)
Examples: Was it the aspirin that stopped my headache? What if I had not smoked last year?

1.Association
Activity: Seeing, Observing
Questions: What if I see…? (How are the variables related? How would seeing X change my 
belief in Y?)
Examples: What does a survey tell us about the election results?

How to build an intelligent machines?

Pearl, J., & Mackenzie, D. (2018). The Book of Why: The New Science of Cause and Effect. Hachette UK.

3-level hierarchy of causality
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How can we build a SCM model �?
        An SCM model � is a 4-tuple < �, �,  �,  � � >:

• � is a set of exogenous variables that are determined by factors outside the model;
• � is a set  �1,  �2, …,  ��  of  endogenous variables of interest that are determined by other variables in the models (� ∪ �) ;
• � is a set of mapping functions  ��1 ,  ��2 , …, ���  such that each ��  is a mapping from ��� ∪ ���� to ��, where ��� ⊆ �, 
   ���� ⊆ �  \  Vi (���� denotes ��’s parents in the graph);
• � �  is a probability function defined over the domain of �.

VA �� VA ��

���

Observed value � =  ��, …,  �� , is associated  with a directed acyclic graph (DAG).

�� ≔ �� ���, �� ,   � = 1, …, � .
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Independent Causal Mechanisms (ICM ) Principle
p The causal generative process of a system’s variables is composed of autonomous modules that do 

not inform or influence each other. 

p Changing (or intervening upon) one mechanism � ��|���  does not change the other mechanisms 
� �� |��� .

p Knowing some other mechanisms � ��|���  does not give us information about a mechanism 
� �� |��� .

Causal (or disentangled) factorization
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For a model to correctly predict the effect of interventions, it needs to be 
robust with respect to generalizing from an observational distribution to 

certain interventional distributions.

� �, � = � � � �|� � �|�  can generalize across all places.

� �|�  can’t generalize across all places.� �, � = � T � �|� 



Levels of causal modeling
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p Learning transferable mechanisms
Ø Modularization 

ü Single components can be re-used across a range of environments and tasks (robustness)

p Learning disentangled representations
Ø Suppose � =  �1, …��  is the observation, we want to construct causal variables �1, …, �� (n ≪ �), ��� denotes ��’s 

parents in the graph. Disentangled representation is 
p S1, …�� = ∏�=1

�  � ��|��� 
I. An encoder q: ℝ� → ℝn encode the input to latent representation comprising noise variables � =  �1, …, �� ;
II. A mapping function  � =  �1, …, ��  map � to �,  where �� ≔ �� ���,  �� , (� = 1, …,  �);
III. A decoder p: ℝn → ℝ� decode the disentangled representations.

p Learning interventional world models and reasoning
Ø Current representation learning do not take into account causal properties of the variables
Ø Future representation learning will move to next level and support intervention, planning, and reasoning
     (Realizing Konrad Lorenz’ notion of thinking as acting in an imagined space)

Causal representation learning
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What properties should future AI models have?
Robust, transferable, interpretable, explainable, fair

Classification Regression Generation



Current progress
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Xia, K., Lee, K. Z., Bengio, Y., & Bareinboim, E. (2021). The causal-neural connection: Expressiveness, learnability, 
and inference. Advances in Neural Information Processing Systems, 34.
Contributions: 
1. Their work disentangles the notions of expressivity and learnability, and then verifies that universal approximability 

is not suitable of learning any SCM by training on data generated by that SCM. 
2. They introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive 

bias to encode structural constraints necessary for performing causal inferences.
3. They develop an algorithm to determine whether a causal effect can be learning from data (i.e., causal identifiability) 

and estimates the effect whenever identifiability holds (causal estimation).
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PCH: Pearl Causal Hierarchy (1. seeing 2. doing 3. imaging)

3.Counterfactuals
Activity: Imaging, Retrospection, Understanding
Questions: What if I had done…? Why? (Was it � that caused �? What if � had not occurred?)
Examples: Was it the aspirin that stopped my headache? What if I had not smoked last year?

2.Intervention
Activity: Doing Intervening
Questions: What if I do…? How? (What would � be if I do � ? How can I make Y happen?)
Examples: Was it the aspirin that stopped my headache? What if I had not smoked last year?

1.Association
Activity: Seeing, Observing
Questions: What if I see…? (How are the variables related? How would seeing X change my 
belief in Y?)
Examples: What does a survey tell us about the election results?
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Xia, K., Lee, K. Z., Bengio, Y., & Bareinboim, E. (2021). The causal-neural connection: Expressiveness, learnability, 
and inference. Advances in Neural Information Processing Systems, 34.
Contributions: 
1. Their work disentangles the notions of expressivity and learnability, and then verifies that universal approximability 

is not suitable of learning any SCM by training on data generated by that SCM. 
�1 � 

�2 � 

�3 � 

� ��  �����������
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and inference. Advances in Neural Information Processing Systems, 34.
Contributions: 
1. Their work disentangles the notions of expressivity and learnability, and then verifies that universal approximability 

is not suitable of learning any SCM by training on data generated by that SCM. 
2. They introduce a special type of SCM called a neural causal model (NCM), and formalize a new type of inductive 

bias to encode structural constraints necessary for performing causal inferences.

An SCM model � is a 4-tuple < �, �,  �,  � � >:
• � is a set of exogenous variables that are determined by 

factors outside the model;
• � is a set  �1,  �2, …,  ��  of  endogenous variables of 

interest that are determined by other variables in the models 
(� ∪ �) ;

• � is a set of mapping functions  ��1 ,  ��2 , …, ���  such that 
each ��  is a mapping from ��� ∪ ���� to ��, where ��� ⊆
�, ���� ⊆ �  \  Vi.

• � �  is a probability function defined over the domain of �

An NCM model � �  is a 4-tuple < �, �, �,  � � > with 
parameters � =  ���: �� ∈ � :
• � ⊆  �C: � ⊆ � , where each � is associated with some 

subset of variables  � ⊆ �.
• �= ���: �� ∈ �  is a set of mapping functions 

 ��1 ,  ��2 , …, ���  such that each ��  is a feedforward neural 
network parameterized by ��� ∈ � mapping ��� ∪ ���� to 
�� for some ���� ⊆ �  and ��� =  �C: �C ∈ �,  �� ∈ � .

• � �  is a standard uniform distribution � ∼ ���� 0,  1 .
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Xia, K., Lee, K. Z., Bengio, Y., & Bareinboim, E. (2021). The causal-neural connection: Expressiveness, learnability, 
and inference. Advances in Neural Information Processing Systems, 34.
Contributions: 
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Intuitive assumption: An NCM can be trained on the observed data and act as a proxy for the true SCM 
�∗ , and inferences about other quantities of �∗ can be done through computation directly in � �  .

Unfortunately this assumption fails in almost all case.
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 CBN: causal bayesian network 



Thanks for your attention!
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