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A brief intro: XAI in graph

…
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Why?

• Deep graph models becoming more widespread

• Black-box models are the mainstream

Ø GCN

Ø GAT

Ø GIN

Ø …

• Various concerns about model transparency
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“Interpretable” v.s. “Explainable”

• Interpretable: we consider a model to be “interpretable” if the model itself can provide humanly 

understandable interpretations of its predictions. Note that such a model is no longer a black box to 

some extent. For example: decision tree

• Explainable:  an “explainable” model implies that the model is still a black box whose predictions could 

potentially be understood by post hoc explanation techniques.
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The challenges of XAI in graph
The challenges cause by characteristics of graph:
• Graphs are not grid-like data

• Each node has different numbers of neighbors
• There is no locality information

• Graph contain important topology information
• Feature matrices
• Adjacency matrices

• Graph data is less intuitive than images and texts
• For explanations of images and texts, humans 

can easily understand them even though the 
explanations are highly abstract.

• Above can’t be held for graph data.

The challenges of transferring current methods:
• It can’t be optimize via input optimization method to 

obtain abstract graph structure for explaining.
• Applying soft masks to the adjacency matrices will 

destroy the discretenss property.

Graph classification:
Ø Graph structures, node features
Node classification:
Ø Message passing, graph structures, 

node features
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Gradient / Features-based methods
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• Sensitivity Analysis (SA)

F. Baldassarre and H. Azizpour, “Explainability techniques for graph convolutional networks,” in International Conference on Machine Learning (ICML) 
Workshops, 2019 Workshop on Learning and Reasoning with Graph-Structured Representations, 2019.

� � = ||∇��||2

Assume � is the input, � is the graph model, S 
is the saliency map, G is the explanation 
method

• Guided Backpropagation (GBP)

Slightly, different from SA, negative gradients are 
clipped during  backpropagation, which 
concentrates the explanation on the  features that 
have an excitatory effect on the output. 

Limitations:
Ø SA and GBP can only reflect the sensitivity between 

input and output, which cannot accurately show 
the importance.

Ø In addition, it also suffers from saturation problems. 



Gradient / Features-based methods
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GCN model

 P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann, “Explainability methods for graph convolutional neural networks,” in Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 10 772–10 781.

Let the k’th graph convolutional feature map at 
layer � be defined as:

The graph average pooling feature after the final 
convolutional layer, �, is calculated as:

The class score is calculated as:

• Gradient-based heatmaps

• Class Activation Mapping (CAM)

• Gradient-weighted Class Activation Mapping (Grad-CAM)
Class specific weights for class � at layer � and for 
feature �:

Heatmap calculated from layer �:



Gradient / Features-based methods
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 P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann, “Explainability methods for graph convolutional neural networks,” in Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 10 772–10 781.

• Gradient-based heatmaps

• Class Activation Mapping (CAM)

• Gradient-weighted Class Activation Mapping 
(Grad-CAM)
Class specific weights for class � at layer � and for 
feature �:

Heatmap calculated from layer �:

Limitations:
Ø CAM has special requirements for the GNN 

structure, which limits its application and 
generalization. 

Ø It assumes that the final node embeddings can 
reflect the input importance, which is heuristic and 
may not be true. 

Ø It can only explain graph classification models and 
cannot be applied to node classification tasks.
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Perturbation-based methods
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• GNNExplainer

Limitations:
Ø “Introduce evidence” problem
Ø The explanations may lack a global view

 Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnexplainer: Generating explanations for graph neural networks,” in Advances in neural 
information processing systems, 2019, pp. 9244– 9255.



Perturbation-based methods
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• PGExplainer

D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang, “Parameterized explainer for graph neural network,” in Advances in neural information 
processing systems, 2020.

Key idea: 
It trains a parameterized mask predictor to predict edge masks. 

Mechanism of PGExplainer:
1. Given an input graph, it first obtains the embeddings for each edge by concatenating node embeddings. 
2. Then the predictor uses the edge embeddings to predict the probability of each edge being selected, 

which can be treated as the importance score. 
3. Next, the approximated discrete masks are sampled via the reparameterization trick. 
4. Finally, the mask predictor is trained by maximizing the mutual information between the original 

predictions and new predictions.



Perturbation-based methods
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• GraphMask

Schlichtkrull, M. S., De Cao, N., & Titov, I. (2021). Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking. In International 
Conference on Learning Representations.

Compared to PGExplainer:
Similarity: 
It trains a classifier to predict whether an edge can be dropped without affecting the original 
predictions.
Difference: 
1. GraphMask obtains an edge mask for each GNN layer while PGExplainer only focuses the input 

space.
2. To avoiding changing graph structures, the dropped edges are replaced by learnable baseline 

connections, which are vectors with the same dimensions as node embeddings.
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GraphLime considers its N-hop neighboring nodes (Determined by the trained GNNs) and their predictions as its 
local dataset and borrow Hilbert-Schmidt Independence Criterion (HSIC) Lasso for predictions.

Finally, based on the weights of different features in HSIC Lasso, it can select important features to explain the 
HSIC Lasso predictions.
Limitation:  1. GraphLime only provide explanations for node features, ignore graph structures. 2. GraphLime is 
proposed to explain node classification but cannot be applied to graph classification models.

Surrogate-based methods
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• GraphLime

Huang, Q., Yamada, M., Tian, Y., Singh, D., Yin, D., & Chang, Y. (2020). Graphlime: Local interpretable model explanations for graph neural networks. arXiv 
preprint arXiv:2001.06216.



Surrogate-based methods
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• RelEx

Zhang, Y., Defazio, D., & Ramesh, A. (2021, July). Relex: A model-agnostic relational model explainer. In Proceedings of the 2021 AAAI/ACM Conference on 
AI, Ethics, and Society (pp. 1042-1049).

1. Obtains a local dataset by randomly sampling connected subgraphs from the computational graph (BFS manner).
2. Feeding these subgraphs to train a GNNs to approximate the target node.
3. Apply perturbation method to get a mask to define the final interpretations.

Limitations:
1. It contains multiple approximation, making the explanations less convincing and trustable.
2. It is not necessary to build another non-interpretable deep model as the surrogate model to explain.
3. It is also unknown how it can be applied for graph classification tasks.



Surrogate-based methods
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• PGM-Explainer

Vu, M., & Thai, M. T. (2020). Pgm-explainer: Probabilistic graphical model explanations for graph neural networks. Advances in neural information 
processing systems, 33, 12225-12235.

1. Given an input graph, each time PGM-Explainer randomly perturbs the node features of several random nodes 
within the computational graph.

2. Then for any node in the computational graph, PGM-Explainer records a random variable indicating whether its 
features are perturbed and its influence on the GNN predictions.

3. By repeating such procedures multiple times, a local dataset is obtained.
4. Then it selects top dependent variables to reduce the size of the local dataset via the Grow-Shrink (GS) algorithm.
5. Finally, an interpretable Bayesian network is employed to fit the local dataset and to explain the predictions of the 

original GNN model.
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Decomposition-based methods
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• LRP

F. Baldassarre and H. Azizpour, “Explainability techniques for graph convolutional networks,” in International Conference on Machine Learning (ICML) 
Workshops, 2019 Workshop on Learning and Reasoning with Graph-Structured Representations, 2019.

Red denotes important nodes
Blue denotes unimportant nodes

Advantages:
LRP identifies which features of the input contribute the most to the final prediction. Furthermore, it is capable 
of handling positive and negative relevance, allowing for a deeper analysis of the contributing factors.
Limitations:
1. Ignore graph structure.
2. Such a algorithm requires a comprehensive understanding of the model structures.

LRP decomposes the output prediction score to different node importance scores.
1. For a target neuron, its score is represented as a linear approximation of neuron scores from the previous layer. 
2. Intuitively, the neuron with a higher contribution of the target neuron activation receives a larger fraction of the 

target neuron score.



Decomposition-based methods
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• Excitation BP

Pope, P. E., Kolouri, S., Rostami, M., Martin, C. E., & Hoffmann, H. (2019). Explainability methods for graph convolutional neural networks. In Proceedings 
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10772-10781).

Excitation BP shares a similar idea as the LRP algorithm but is developed based on the law of total probability.
Compared to LRP: It defines that the probability of a neuron in the current layer is equal to the total probabilities it 
outputs to all connected neurons in the next layer.
Share the same limitation as LRP.
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Generation-based methods
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• XGNN

Huang, Q., Yamada, M., Tian, Y., Singh, D., Yin, D., & Chang, Y. (2020). Graphlime: Local interpretable model explanations for graph neural networks. arXiv 
preprint arXiv:2001.06216.

Instead of directly optimizing the input graph, it trains a graph generator so that the generated graphs can 
maximize a target graph prediction.
Limitation:
It is unknown whether XGNN can be applied to node classification tasks.
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Looking forward
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• Gradients/Features

• Perturbations

• Surrogate

• Decomposition

• Generation

• What next…?



Thanks for your attention!
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