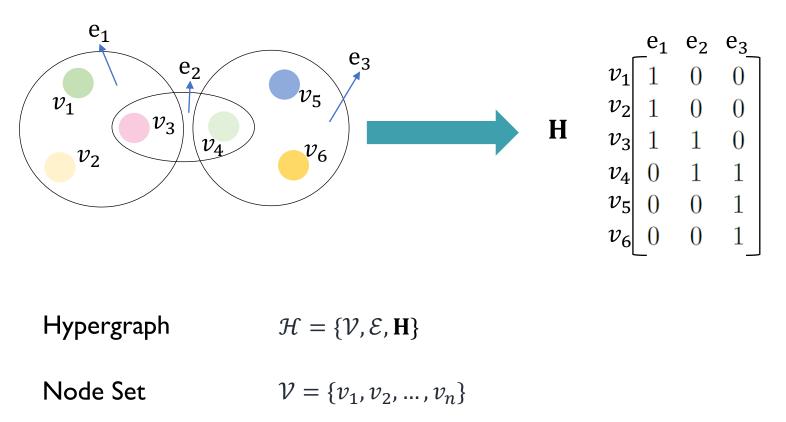
Hypergraph Transformer for Semi-Supervised Classification

Zexi Liu¹Bohan Tang²ZiyuanYe³Xiaowen Dong²Siheng Chen^{1,4}Yanfeng Wang^{4,1}

Hypergraph

Math formulation



Edge Set $\mathcal{E} = \{e_1, e_2, \dots, e_m\}$ Incidence Matrix $\mathbf{H} \in \{0,1\}^{n \times m}$

Hypergraph

Examples

Co-authorships

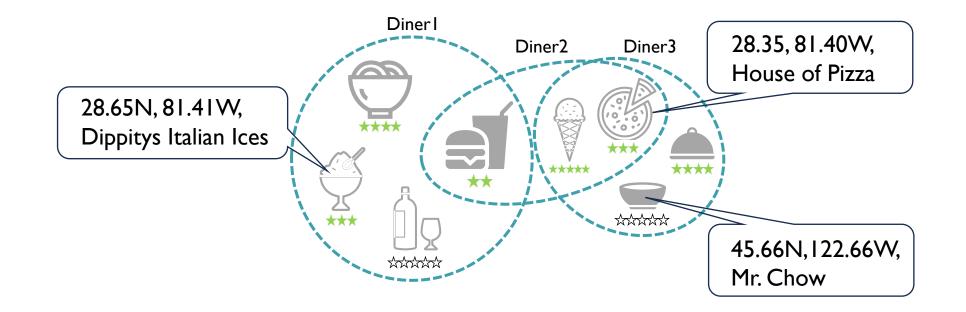
Cooking Recipe

A paper is co-authored by multiple authors

A recipe is composed of multiple ingredients

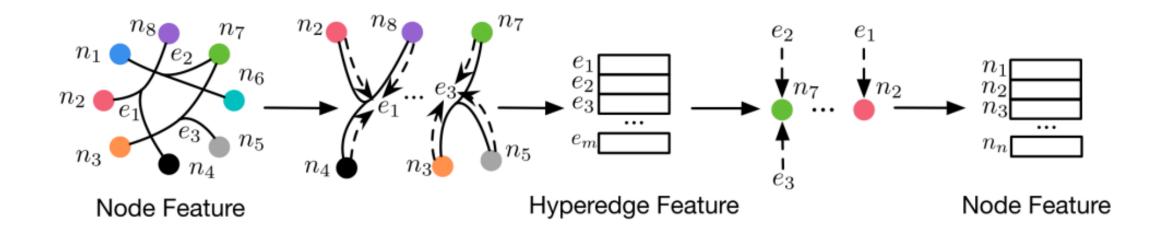
Semi-Supervised Node Classification on Hypergraphs

Given node features $\mathbf{X}_{\mathcal{V}} \in \mathbb{R}^{n \times d}$, labels $\mathbf{Y}_{lab} = {\{\mathbf{y}_v\}_{v \in \mathcal{V}_{lab}}}$ and hypergraph structure **H**, we aim to classify nodes in $\mathcal{V} \setminus \mathcal{V}_{lab}$.



Hypergraph Neural Networks

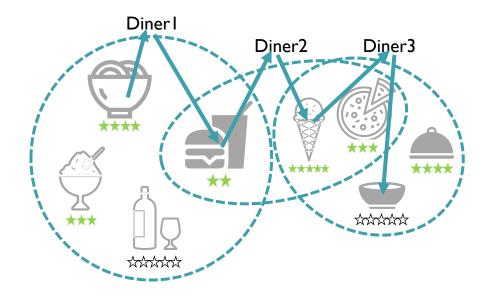
Two-step message passing



- Node features are sent to corresponding hyperedges to learn hyperedge embeddings
- Learned hyperedge embeddings are sent back to nodes to learn node embeddings

Hypergraph Neural Networks

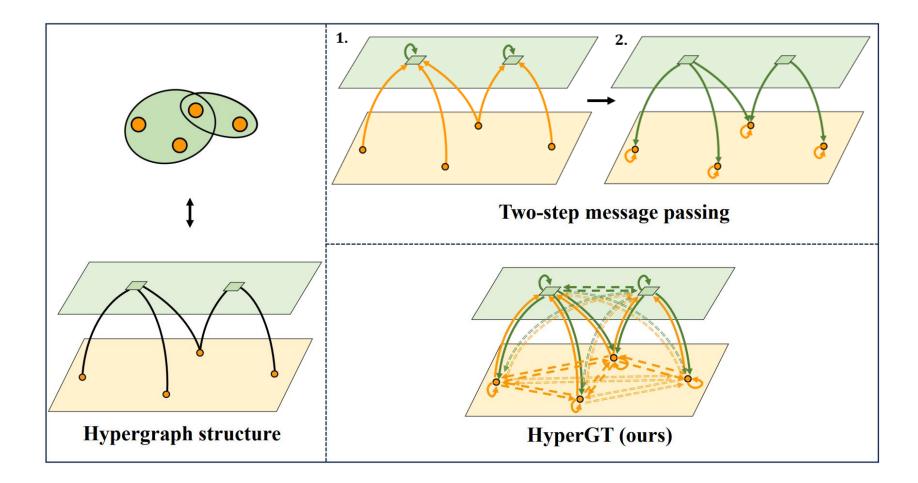
Two-step message passing



not efficiently exploiting the global information present in hypergraph-structured data!

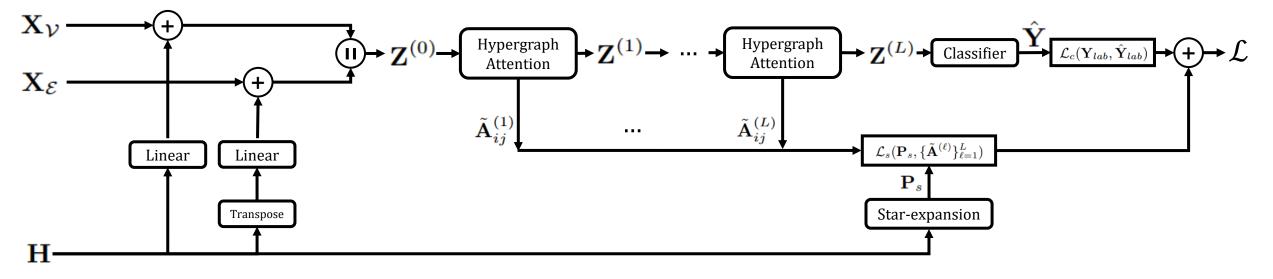
HyperGT: Interactions among all nodes and hyperedges

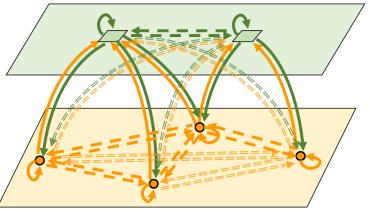
Capture both global and local interactions among all nodes and hyperedges in one single step



HyperGT's Overall Architecture

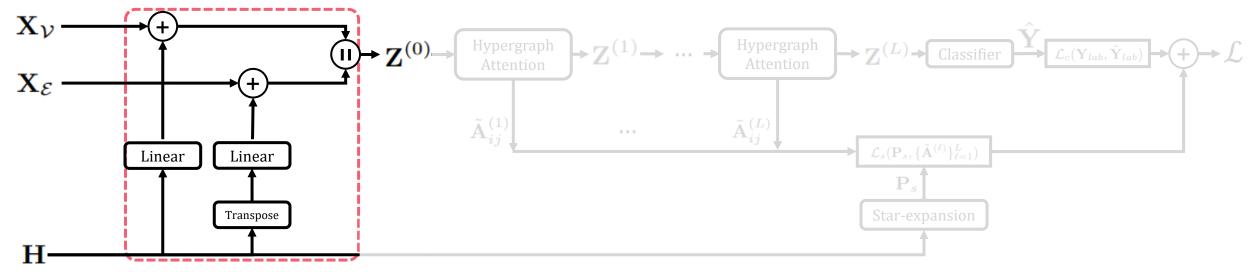
Transformer-based architecture to efficiently incorporates both global and local interactions in hypergraph

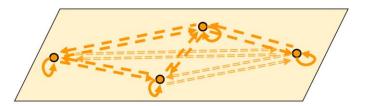




Hypergraph Incidence Matrix Based Positional Encoding

Valuable Structural insights: offering local node-node and hyperedge-hyperedge interactions





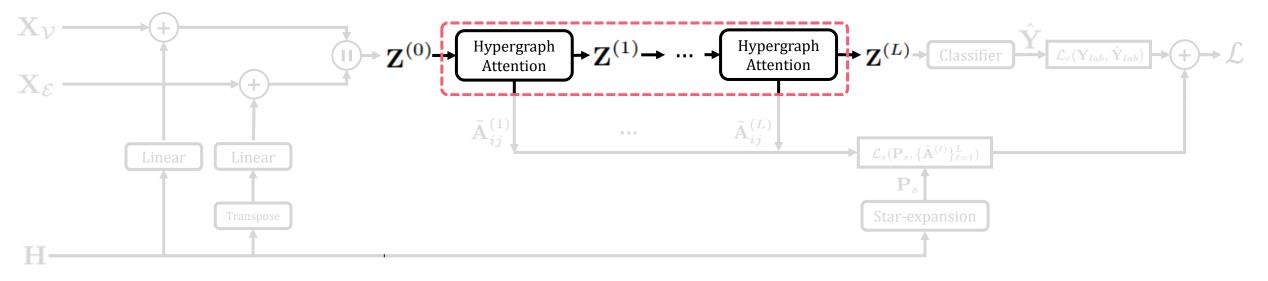
Input features

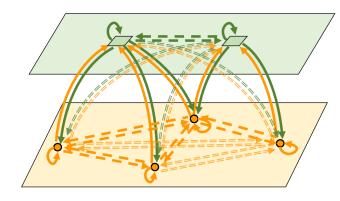
$$\mathbf{Z}^{(0)} = \mathbf{X} + \mathbf{P} = \begin{bmatrix} \mathbf{X}_{\mathcal{V}} + \mathbf{P}_{\mathcal{V}} \\ \mathbf{X}_{\mathcal{E}} + \mathbf{P}_{\mathcal{E}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{\mathcal{V}} + \mathbf{H}\mathbf{W}_{\mathcal{V}} \\ \mathbf{X}_{\mathcal{E}} + \mathbf{H}^{\top}\mathbf{W}_{\mathcal{E}} \end{bmatrix} \in \mathbb{R}^{(n+m) \times d}.$$

Theorem 1. Let \mathbf{p}_u , \mathbf{p}_v be the positional encoding of nodes u and v, respectively. Then, $\|\mathbf{p}_u - \mathbf{p}_v\|_2 \leq C\sqrt{N_e}$, where C is a constant and N_e is the number of hyperedges only with either node u or v.

Hypergraph Attention

Efficient information propagation: pairwise global interactions between all nodes and hyperedges in only one single step





Attention for each instance pair

$$\tilde{\mathbf{A}}_{ij}^{(\ell)} = \frac{\exp((\mathbf{z}_i^{(\ell)} \mathbf{W}_{\mathbf{Q}}^{(\ell)}) (\mathbf{z}_j^{(\ell)} \mathbf{W}_{\mathbf{K}}^{(\ell)})^{\top})}{\sum_{k=1}^{n+m} \exp((\mathbf{z}_i^{(\ell)} \mathbf{W}_{\mathbf{Q}}^{(\ell)}) (\mathbf{z}_k^{(\ell)} \mathbf{W}_{\mathbf{K}}^{(\ell)})^{\top})}$$

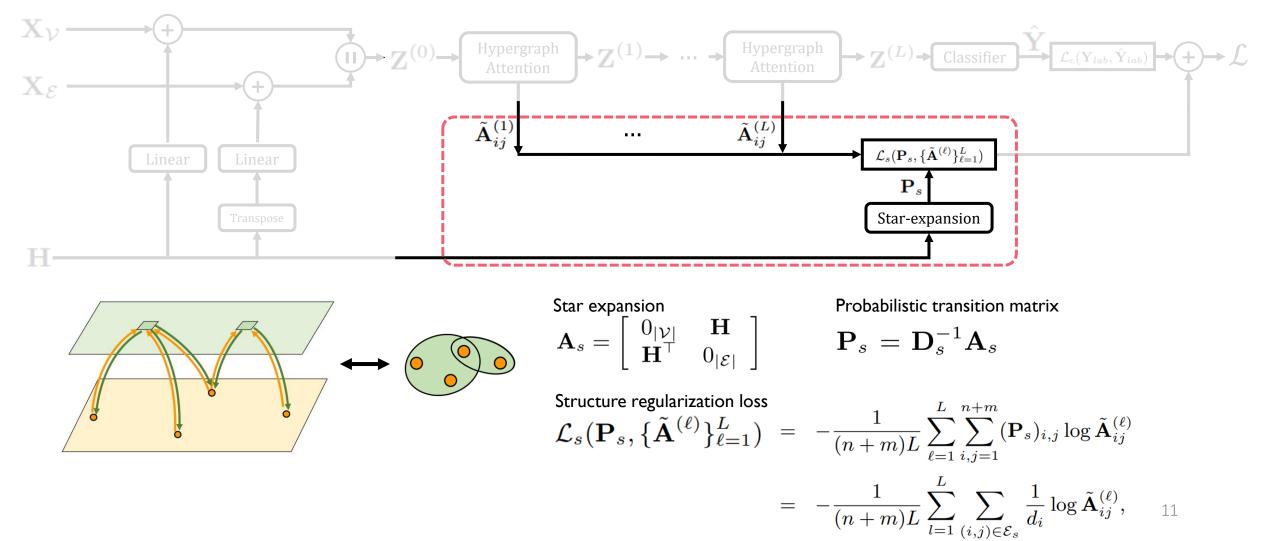
Updated representaion

$$\mathbf{z}_{i}^{(\ell+1)} = \sum_{j=1}^{n+m} \tilde{\mathbf{A}}_{ij}^{(\ell)} \cdot (\mathbf{z}_{j}^{(\ell)} \mathbf{W}_{\mathbf{V}}^{(\ell)})$$

10

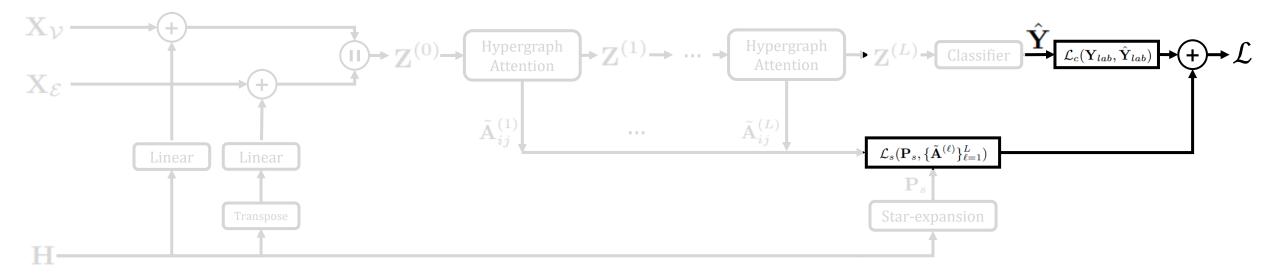
Hypergraph Structure Regularization

Connectivity Loseless Supervision: utilize the node-hyperedge connection prior to guide the training of the attention matrix



HyperGT's Training Strategy

Balance node labels cross-entropy loss and hypergraph structure loss



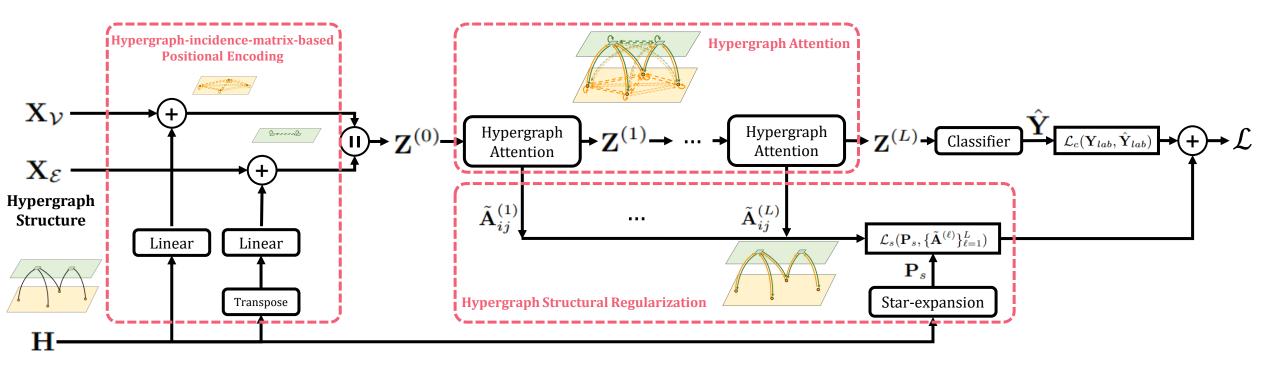
Supervised classification loss
$$\mathcal{L}_{c}(\mathbf{Y}_{lab}, \hat{\mathbf{Y}}_{lab}) = -\frac{1}{|\mathcal{V}_{lab}|} \sum_{u \in \mathcal{V}_{lab}} \mathbf{y}_{u} \log(\hat{\mathbf{y}}_{u}^{\top})$$

Structure regularization loss $\mathcal{L}_{s}(\mathbf{P}_{s}, \{\tilde{\mathbf{A}}^{(\ell)}\}_{\ell=1}^{L}) = -\frac{1}{(n+m)L} \sum_{l=1}^{L} \sum_{(i,j) \in \mathcal{E}_{s}} \frac{1}{d_{i}} \log \tilde{\mathbf{A}}_{ij}^{(\ell)},$

Final loss function

$$\mathcal{L} = \mathcal{L}_c + \lambda \mathcal{L}_s$$

HyperGT's Overall Architecture



HyperGT effectively incorporates global interactions while preserving local connectivity patterns!

Experimental Results

Datasets

	Congress	Senate	Walmart	House
$ \mathcal{V} $	1718	282	88860	1290
$ \mathcal{E} $	83105	315	69906	341
# features	100	100	100	100
# class	2	2	11	2

Baselines

Nine representative HyperGNNs: HGNN (AAAI 2019), HyperGCN (NeurIPS 2019), HNHN(ICML 2020 workshop), HCHA (Pattern Recognition 2021), HyperND (2021), UniGNN (IJCAI 2021), AllDeepSets (ICLR 2022), AllSetTransformer (ICLR 2022), EDHNN (ICLR 2023).

Metric

$$Accuracy = \frac{N_{correct \ predictions}}{N_{total \ predictions}} \ * \ 100\%$$

Experimental Results

Test ACC

Superior classification accuracy across all datasets compared to previous hgnns					
	Congress	Senate	Walmart	House	
HGNN	91.26 ± 1.15	48.59 ± 4.52	62.00 ± 0.24	61.39 ± 2.96	
HCHA	90.43 ± 1.20	48.62 ± 4.41	62.35 ± 0.26	61.36 ± 2.53	
HNHN	53.35 ± 1.45	50.93 ± 6.33	47.18 ± 0.35	67.80 ± 2.59	
HyperGCN	55.12 ± 1.96	42.45 ± 3.67	44.74 ± 2.81	48.32 ± 2.93	
UniGCNII	94.81 ± 0.81	49.30 ± 4.25	54.45 ± 0.37	67.25 ± 2.57	
HyperND	74.63 ± 3.62	52.82 ± 3.20	38.10 ± 3.86	51.70 ± 3.37	
AllDeepSets	91.80 ± 1.53	48.17 ± 5.67	64.55 ± 0.33	67.82 ± 2.40	
AllSetTransformer	92.16 ± 1.05	51.83 ± 5.22	65.46 ± 0.25	69.33 ± 2.20	
ED-HNN	95.00 ± 0.99	64.79 ± 5.14	66.91 ± 0.41	72.45 ± 2.28	
HyperGT(Ours)	95.23 ± 0.73	65.49 ± 5.11	69.83 ± 0.39	74.55 ± 1.99	

--: C -- 4: compared to C - - 4 -• . . . I.

Experimental Results

Ablation study

node PE	hyperedge PE	structure regularization	ACC
_	-	-	45.67
\checkmark	-	-	66.51
\checkmark	\checkmark	-	67.63
\checkmark	\checkmark	\checkmark	69.83

All of the components are helpful for modelling hypergraph data

Efficiency (ms/run)

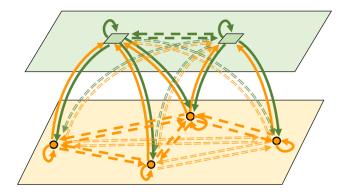
Maintains competitive inference speeds aligning with its theoretically low linear complexity^[1]

HGNN	HCHA	UniGCNII	AllDeepset	AllSetTransformer	HyperGT
20.301	20.942	25.015	32.603	62.788	24.882

Summary

• HyperGT efficiently incorporates both global and local interactions in hypergraph

- Hypergraph Attention: efficient propagate signals between all nodes and hyperedges
- Hypergraph Incidence Matrix Based PE: offer local node-node & hyperedge-hyperedge correlations
- Hypergraph Structure Regularization: capture connectivities between nodes and hyperedges



Hypergraph Transformer for Semi-Supervised Classification

