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ℋ = {𝒱, ℰ, 𝚮}

𝚮 ϵ {0,1}𝑛×𝑚

𝒱 = {𝑣1, 𝑣2, … , 𝑣𝑛}

ℰ = {𝑒1, 𝑒2, … , 𝑒𝑚}

Math formulation

Incidence Matrix

Hypergraph

Node Set

Edge  Set
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Co-authorships Cooking Recipe

Hypergraph

Examples

A paper is co-authored by 
multiple authors

A recipe is composed of 
multiple ingredients
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Given node features 𝐗𝒱 ∈ ℝ𝑛×𝑑, labels                               and hypergraph structure 𝚮,

we aim to classify nodes in          . 

Semi-Supervised Node Classification on Hypergraphs

28.65N, 81.41W, 

Dippitys Italian Ices

45.66N,122.66W,

Mr. Chow

28.35, 81.40W,

House of Pizza

Diner1

Diner2 Diner3

𝒱 \ 𝒱𝑙𝑎𝑏
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Hypergraph Neural Networks

• Node features are sent to corresponding hyperedges to learn hyperedge embeddings

• Learned hyperedge embeddings are sent back to nodes to learn node embeddings

Two-step message passing

[1] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao, “Hypergraph neural networks,” AAAI 2019.
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Hypergraph Neural Networks

not efficiently exploiting the global information present in hypergraph-structured data!

Diner1

Diner2 Diner3

Two-step message passing

6



HyperGT: Interactions among all nodes and hyperedges

Capture both global and local interactions among all nodes and hyperedges in one single step
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Classifier + ℒ…

…
Linear Linear

Transpose Star-expansion

HyperGT’s Overall Architecture

Transformer-based architecture to efficiently incorporates both global and local interactions in hypergraph
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Hypergraph Incidence Matrix Based Positional Encoding

Hypergraph
Attention

+

+

Hypergraph
Attention

Classifier + ℒ…

…
Linear Linear

Transpose Star-expansion

Input features

Valuable Structural insights: 

offering local node-node and hyperedge-hyperedge interactions
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Hypergraph Attention

Hypergraph
Attention

+

+

Hypergraph
Attention

Classifier + ℒ…

…
Linear Linear

Transpose Star-expansion

Efficient information propagation:

pairwise global interactions between all nodes and hyperedges in only one single step

Updated representaion

Attention for each instance pair
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Hypergraph Structure Regularization

Connectivity Loseless Supervision:

utilize the node-hyperedge connection prior to guide the training of the attention matrix
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…
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Transpose Star-expansion

Star expansion Probabilistic transition matrix

Structure regularization loss
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HyperGT’s Training Strategy

Balance node labels cross-entropy loss and hypergraph structure loss

Supervised classification loss
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…
Linear Linear

Transpose Star-expansion

Structure regularization loss

Final loss function
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Hypergraph 
Structure

HyperGT’s Overall Architecture

HyperGT effectively incorporates global interactions 

while preserving local connectivity patterns!

Hypergraph
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+

Hypergraph
Attention

Classifier + ℒ…

…
Linear Linear

Transpose Star-expansion

Hypergraph AttentionHypergraph-incidence-matrix-based
Positional Encoding

Hypergraph Structural Regularization
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Datasets

Baselines

Metric

Nine representative HyperGNNs: HGNN (AAAI 2019), HyperGCN (NeurIPS 2019), HNHN(ICML 

2020 workshop), HCHA (Pattern Recognition 2021),HyperND (2021), UniGNN (IJCAI 2021), 

AllDeepSets (ICLR 2022), AllSetTransformer (ICLR 2022), EDHNN (ICLR 2023).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑁𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

∗ 100%

Experimental Results



Test ACC

Experimental Results

Superior classification accuracy across all datasets compared to previous hgnns
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All of the components are helpful for modelling hypergraph data

Maintains competitive inference speeds aligning with its theoretically low linear complexity

Experimental Results

Ablation study

Efficiency (ms/run)

[1] Qitian Wu et al., “Nodeformer: A scalable graph structure learning transformer for node classification,” NeurIPS 2022.

[1] 
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Summary

• HyperGT efficiently incorporates both global and local interactions in hypergraph

• Hypergraph Attention: efficient propagate signals between all nodes and hyperedges 

• Hypergraph Incidence Matrix Based PE: offer local node-node & hyperedge-hyperedge correlations

• Hypergraph Structure Regularization: capture connectivities between nodes and hyperedges
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Many Thanks!

Q&A

liuzexi@sjtu.edu.cn

https://github.com/zeroxleo/HyperGT

Hypergraph Transformer for Semi-Supervised Classification
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