SAME: Uncovering GNN Black Box with Structureaware Shapley-based Multipiece Explanation

Ziyuan Ye^{*}, Rihan Huang^{*}, Qilin Wu, Quanying Liu[†]

Ye, Z.*, Huang, R.*, Wu, Q., & Liu, Q. (2023). SAME: Uncovering GNN black box with structure-aware Shapley-based multipiece explanation. Thirty-seventh Conference on Neural Information Processing Systems.

* Equal contribution, co-first author + Corresponding author.

A brief intro: XAI in graph

- Deep graph models becoming more widespread
- Black-box graph models are the mainstream
 - Graph Convolutional Network (GCN)
 - Graph Attention Network (GAT)
 - Graph Isomorphism Network (GIN)

▶ ...

- Various concerns about model transparency
- Analyzing the influence of a single node or edge is not enough.

Motivation

Brain Networks Associated with Specific Cognitive Task

Functional Groups Associated with Molecular Property

Social Groups Associated with Single Person

- The characteristics and properties within a graph or node tend to be jointly influenced by more than one high-order connected community of the graph.
- > To design an explanation method: Retain important nodes while avoiding irrelevant nodes.

Methodology

- (a) Important substructure initialization phase
- Search the single connected important substructure.
- (b) Explanation exploration phase
- Provide a candidate set of explanations
- Optimize the combination of different important substructures.

Expansion-based Monte Carlo Tree Search (MCTS)

Root Node: Empty graph

- Root Node: Empty graph
- Expand within 1-hop neighbors of the associate substructure
- Choose the best children according to the Shapley value

- Root Node: Empty graph
- Expand within 1-hop neighbors of the associate substructure
- Leaf Node: The substructure reaches the maximum size predefined
- > Backpropagation to update the previous nodes

- Root Node: Empty graph
- Expand within 1-hop neighbors of the associate substructure
- Leaf Node: The substructure reaches the predefined maximum size
- Backpropagation to update the previous nodes
- Important substructure set: All the substructures in the MCTS

Important Substructure Set

Expansion-based Monte Carlo Tree Search (MCTS)

Root Node: Empty graph

- Root Node: Empty graph
- Expand an important substructure
- Leaf Node: The size reaches the threshold

- Root Node: Empty graph
- Expand an important substructure
- Leaf Node: The size reaches the threshold
- Backpropagation to update the previous nodes

- Root Node: Empty graph
- Expand an important substructure
- Leaf Node: The size reaches the threshold
- Backpropagation to update the previous nodes
- > Explanation Candidate Set: All the leaf nodes

Explanation Candidate Set

Experiments

Table 2: Comparison of our SAME and other baseline using fidelity.

Dataset	Graph classification					Node classif.
	Molecular graph		Semantic graph		Synthetic graph	
Methods	BBBP	MUTAG	Graph-SST2	Graph-SST5	BA-2Motifs	BA-Shapes
Grad-CAM [22]	0.226 ± 0.036	$0.261 {\pm} 0.018$	0.257 ± 0.056	0.229 ± 0.042	$0.472 {\pm} 0.010$	-
GNNExplainer [35]	0.148 ± 0.041	$0.188 {\pm} 0.031$	$0.143 {\pm} 0.041$	0.170 ± 0.046	$0.442 {\pm} 0.026$	$0.154 {\pm} 0.000$
PGExplainer [19]	0.197 ± 0.043	$0.156 {\pm} 0.004$	$0.219 {\pm} 0.040$	$0.207 {\pm} 0.036$	0.431 ± 0.011	$0.135 {\pm} 0.020$
GNN-LRP [25]	0.111 ± 0.040	$0.253 {\pm} 0.030$	0.103 ± 0.042	0.131 ± 0.057	0.146 ± 0.010	$0.155 {\pm} 0.000$
SubgraphX [38]	0.433 ± 0.073	$0.379 {\pm} 0.030$	$0.262 {\pm} 0.027$	0.283 ± 0.042	0.493 ± 0.003	$0.181 {\pm} 0.005$
GStarX [40]	0.117 ± 0.043	$\underline{0.656{\pm}0.096}$	$\overline{0.183 \pm 0.050}$	0.186 ± 0.050	$\overline{0.476 \pm 0.014}$	-
SAME Relative Improve	0.489±0.034 12.9%↑	0.702±0.125 7.01%↑	0.373±0.042 42.3%↑	0.393±0.022 38.9%↑	0.549±0.004 11.3%↑	0.214±0.000 18.2%↑

Note: The fidelity results are averaged across different sparsity from 0.5 to 0.8. The quantitative results are presented in the form of mean \pm std. The previous SOTA results on different datasets are marked with an underline. *Relative Improve* denotes the relative improvement of our SAME method over the SOTA methods.

Table 3: Comparison of inference time (in seconds) on different datasets.

Dataset	BBBP	MUTAG	Graph-SST2	Graph-SST5	BA-2Motifs	BA-Shapes
Grad-CAM [22]	0.16	0.23	0.39	0.44	0.14	-
GNNExplainer [35]	7.56	1.96	7.64	19.39	1.89	2.72
PGExplainer [19]	0.15	0.21	0.35	0.43	0.12	0.13
GNN-LRP [25]	2.37	1.97	5.84	5.47	3.30	51.77
SubgraphX [38]	26.72	151.75	36.48	71.32	85.50	162.80
GStarX 40	84.54	25.24	30.64	54.49	77.99	-
SAME	7.86	5.67	6.06	8.83	8.19	14.08

Note: The PGExplainer needs training before inferring the explanation.

Fidelity

- A higher fidelity demonstrates a better explainability.
- SAME outperforms the SOTA baselines among different tasks and datasets.

Inference Time

SAME consistently achieves much lower computational cost compared to GStarX and SubgraphX, reflecting its efficiency and robustness.

MUTAG dataset

SAME achieves to provide the explanations the same as the ground truth (-NO₂) which are labeled by human experts.

BA-2Motifs dataset

SAME exactly finds the groundtruth explanation (a 5-node-housestructure motif) compared to other baselines.

Experiments

Grad-	CAM GNN	Explainer	PGExplainer	
of scr	eam a of s	cream a	of scream	a
cons. str	uct. carefully cons.	struct. – carefully c	ons. struct. care	efully
that tort	ured is that to	ortured is t	hat tortured	is
and un	set. – – and –	unset a	and unset.	
but al	ve unques. but	alive unques.	but alive und	ques.
GNN-LRP	SubgraphX	GStarX	S	SAME(ours)
of scream a	of scream a	of scream	a of	scream a
cons. struct. carefully	cons. struct. carefull	y cons. struct.	carefully cons.	struct. carefully
that tortured is	that tortured is	that tortured	is that	tortured is
and unset	and unset	and unset.	and	unset. – ––

Sentence: "a carefully structured scream of consciousness that is tortured and unsettling -- but unquestionably alive."

Graph-SST2 dataset

SAME can well capture the adjectives-or-adverbs-like graph structures than other baselines.

Thanks for your attention!