

Spatial Temporal-pyramid Graph Convolutional Networks for Interpretable fMRI-based Brain Decoding

Presenter: Ziyuan Ye (叶梓元)

Thursday, May 26, 2022

Background

Motivation

• Interpretable brain decoding is a core aspect of understanding our brain.

Current bottleneck

- DL models for brain decoding can achieves high decoding performance while suffering very poor interpretability.
- Interpretation methods for DL models are limited in brain decoding task.

Breaking the bottleneck

Why the high decoding performance and high interpretability cannot be achieved at the same time by previous methods?

□ From the perspective of the **representation of data**

□ From the perspective of model architecture

Common GNNs' architecture with temporal processing module

3

Breaking the bottleneck

STpGCN

> captures multi-scale temporal features and fuses the multi-level semantic information.

NeurocircuitX

> provides a whole-brain and neural-circuit level explanation for each task state

$$\Omega(p_i) = (1 - \alpha)f(p_i) + \alpha[f(P) - f(P \setminus \{p_i\})]$$

Let $f(\cdot)$ denotes a <u>well-trained</u> graph classification model. We can assign *N* ROIs into distinct cortical networks $P = \{p_1, ..., p_{17}\}$. $\Omega(p_i)$ indicates the importance of the neural circuit p_i .

Interpretable decoding framework

Decoding performance

Interpretability

Robustness and generalizability

Robustness

TABLE III Comparison results of 23 brain states decoding using STPGCN on 15 time steps of FMRI with MMP atlas given different dataset split ratios.

Training set ratios	ACC↑	Macro Pre↑	Macro R↑	Macro F1↑
90%	92.4 ± 0.8	$92.5 {\pm} 0.7$	$92.4{\pm}0.8$	$92.4{\pm}0.7$
70%	90.7±0.6	$90.8 {\pm} 0.6$	$90.7 {\pm} 0.6$	90.7 ± 0.6
50%	88.8±0.5	$88.8 {\pm} 0.5$	$88.8 {\pm} 0.5$	$88.8 {\pm} 0.5$
30%	86.4±0.3	$86.4 {\pm} 0.2$	86.4 ± 0.3	86.4 ± 0.3
10%	79.2 ± 0.5	79.3 ± 0.4	$79.2 {\pm} 0.4$	$79.2 {\pm} 0.5$

8

Note: Mean \pm std (%) are from 10-fold cross validation.

Generalizability

Thanks for your attention!