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What is AI Agent?

6
Credits: https://github.com/e2b-dev/awesome-ai-agents

Most of the listed AI agents are mainly based on LLMs and do not have real-time perception of the physical world. They 
cannot directly perceive visual, auditory, or tactile information unless this information is explicitly input to them in text form.

AI Agent Landscape
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NO interaction with the environment!!!



Will AI Agent with Perception Module Allow Us to Well Model Real-world Animals?

8Merel, J., Aldarondo, D., Marshall, J., Tassa, Y., Wayne, G., & Olveczky, B. (2020). Deep neuroethology of a virtual rodent. In International 
Conference on Learning Representations.

Input: Perceptual information / Visual information

Goal:
Through deep reinforcement learning methods to train an 
ANN (Perception: Small-ResNet; Core layer: LSTM; Policy 
layer: LSTM) to complete four different tasks in virtual 
environment.

Results:
1. Some behavioral representations were shared across 

tasks, especially in the policy layers.
2. Policy layers encoded more low-level motor features, 

while core layers encoded higher-level task variables.
3. Networks with fewer layers showed more sharing of 

representations across tasks.

Limitations:
1. Cannot well mimic the real-world actions and behaviors.
2. Four specific tasks cannot cover the whole action space.
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How to replicate the movement and behavior of real animals?

11

Four key aspects of replication.



MIMIC Framework: Motor IMItation and Control
Step 1: Data acquisition
• 6 cameras for behavior recording
• 2 128-channel tetrode for brain 

neural activities recording

Step 2: 3D pose estimation
• Using DANNCE to track 23 

anatomical landmarks (key 
points) on the rat

Step 3: Skeletal registration
• Register a 74 degree-of-freedom 

/ 38 controllable degrees-of-
freedom skeletal rat model to 
the key points

Step 4: Imitation
• Trained ANNs to achieve inverse 

dynamics models using DRL
• Input: reference trajectories and 

current body state
• Outputs: joint torques
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Training Artificial Agents to Imitate Rat Behavior with MIMIC

A. Training framework
The neural network implements 
an inverse dynamics model to 
generate the desire action
based on the current state and 
the reference trajectory.

B. Behavior similarity 
comparison
The anterior-posterior (AP) 
position of the key points; Key 
points’ height from floor.

14



Training Artificial Agents to Imitate Rat Behavior with MIMIC
C. Behavior demonstration
Rear (后肢站立)
Walk (自然行走)

D. Simulation error of 
different body parts

E. Simulation error of 
different behavior

F. Illustration of error 
accumulation over time

G. Robustness evaluation: 
Demonstrate how long the 
virtual mouse model can 
continue to accurately mimic 
the behavior of a real mouse 
without triggering 
termination and reset 
conditions 15



Neural Activity of Virtual and Real Rat

Real rat
Top: A-P: Distance between each anterior-posterior (A-P) position of the key points and centroid position of rat; Height: Key 
points’ height from floor.
Bottom: DLS (Dorsolateral striatum, 背外侧纹状体, responsible for motor control and coordination) spike train
Virtual rat
Different representation value trains 16



Neural Activity in DLS and MC is Well Predicted by An Inverse Dynamics Model

Fig. B-C: Using Poisson generalized linear models (GLM) to construct the relationship between each real-world neuronal 
activity and different virtual rodent representations. 
Key finding: GLMs based on the inverse dynamics models outperform those based on representational features for the 
majority of classified neurons in both DLS and MC. 17

inverse dynamics models

Fig. D: Comparing 
predictions from the best 
computational (red) and 
representational features 
(blue and green) for each 
neuron. 



Similar Patterns of Neuron Population between Virtual and Real Brain

Background knowledge:
• The DLS plays a key role in learning movement sequences, influencing the output of the motor cortex (MC).
• The MC is responsible for executing the final selected action (similar to decoder).

18

Average representational dissimilarity 
matrices (RDMs) for neural activity 

Averaged 
firing rate



Similar Patterns of Neuron Population between Virtual and Real Brain

Fig. C-E: Across-subject 
average of whitened-
unbiased cosine (WUC)
similarity between RDMs of 
different computational and 
representational models and 
neural activity.
Results: Inverse dynamics 
models (Green & Blue) 
perform better than 
representational models (Red)

Fig. F-I: Similarity between 
neural activity and each of  
network layers.
Results: Neural dynamics in 
MC is easier to predict by 
artificial neural network.

19

Average representational dissimilarity 
matrices (RDMs) for neural activity 



Action Variability & Latent Variability

20

Variability calculation method: Resampling the latent space 50 times at every step to obtain instantaneous action 
variability and latent variability 



Action Variability & Latent Variability

21

D. Trajectories of six latent 
dimensions along which 
variability was differentially 
regulated across behavior. 

E. The population latent 
variability discriminates 
behaviors.

F-H. The deviations from 
normal variability structure 
reduce the model's 
robustness to noise.

I. The virtual rodent model is able to adaptively adjust the variability in the latent space according to different behavioral 
demands (Fig.I-right). Different behaviors may require precise control in different latent dimensions (Fig.I-left). This is reflected in 
the reduction of variability in critical dimensions in the latent space.
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Bridging The Relationship between Neural Activity and Behavior via AI Agent

23

George, T. M., Rastogi, M., de Cothi, W., Clopath, C., Stachenfeld, K., & Barry, C. (2024). RatInABox, a toolkit for modelling 
locomotion and neuronal activity in continuous environments. Elife, 13, e85274.
Whittington, J. C., Dorrell, W., Ganguli, S., & Behrens, T. (2023). Disentanglement with biological constraints: A theory of functional 
cell types. In The Eleventh International Conference on Learning Representations.

George et al. (2024). Elife.

User-generated Environment

Python package: RatInABox

Whittington et al. (2023). ICLR.



Bridging Neural Dynamics and Behaviour via Virtual Insect

24Singh, S. H., van Breugel, F., Rao, R. P., & Brunton, B. W. (2023). Emergent behaviour and neural dynamics in artificial agents 
tracking odour plumes. Nature machine intelligence, 5(1), 58-70.

Goal: use deep reinforcement learning 
to train RNN agents to locate the 
source of simulated odor plumes in 
changing wind conditions.

Input: wind velocity [wind-X, wind-Y] 
and local odor concentration. 
Output: move / turn

Results:
1. Well-trained RNN exhibited similar 
behaviors compared to those of real-
world flying insects tracking odor 
plumes:
• Upwind surges when detecting odor
• Cross-wind casts and U-turns when 

losing the odor trail
• Different behavioral modules for 

tracking, recovering, and being lost
2. Long timescale memory is crucial for 
RNN to track odor plumes



Other virtual animals: Virtual Drosophila Simulator

25Lobato-Rios, V., Ramalingasetty, S. T., Özdil, P. G., Arreguit, J., Ijspeert, A. J., & Ramdya, P. (2022). NeuroMechFly, a 
neuromechanical model of adult Drosophila melanogaster. Nature Methods, 19(5), 620-627.

Overview:
NeuroMechFly is the first 
comprehensive, morphologically
accurate neuromechanical simulation 
framework for the adult drosophila.

Simulation framework:
Obtaining tactile information when 
fruit flies come into contact with the 
environment through dynamic replay 
and inverse dynamics calculation.

Possible future work:
Construct a neural network as 
controller which take tactile 
information as input, and output the 
kinematic statistics for motion. This 
might help us to explore the network 
dynamics behind environmental 
stimulus and behaviors.



Thanks for your attention!


