A virtual rodent predicts the structure of neural activity across behaviors

Authors: Diego Aldarondo*, Josh Merel, Jesse D. Marshall, Leonard Hasenclever, Ugne Klibaite, Amanda Gellis, Yuval Tassa, Greg Wayne, Matthew Botvinick & Bence P. Ölveczky*

> Speaker: Ziyuan Ye Thursday, July 25, 2024

Aldarondo, D., Merel, J., Marshall, J. D., Hasenclever, L., Klibaite, U., Gellis, A., ... & Ölveczky, B. P. (2024). A virtual rodent predicts the structure of neural activity across behaviors. *Nature*, 1-3.

- 1. Introduction to Bence P. Ölveczky
- 2. Background
- 3. Framework
- 4. Method & Results
- 5. Discussion

- 1. Introduction to Bence P. Ölveczky
- 2. Background
- 3. Framework
- 4. Method & Results
- 5. Discussion

Bence P. Ölveczky

- 1. Introduction to Bence P. Ölveczky
- 2. Background
- 3. Framework
- 4. Method & Results
- 5. Discussion

What is AI Agent?

AI Agent Landscape

Most of the listed AI agents are mainly <u>based on LLMs</u> and <u>do not</u> have <u>real-time perception of the physical world</u>. They cannot directly perceive visual, auditory, or tactile information unless this information is <u>explicitly input to them in text form</u>.

Credits: https://github.com/e2b-dev/awesome-ai-agents

What is AI Agent?

AI Agent Landscape

Most of the listed AI agents are mainly <u>based on LLMs</u> and <u>do not</u> have <u>real-time perception of the physical world</u>. They cannot directly <u>perceive visual</u>, auditory, or tactile information unless this information is <u>explicitly input to them in text form</u>.

Credits: https://github.com/e2b-dev/awesome-ai-agents

Will AI Agent with <u>Perception Module</u> Allow Us to Well Model Real-world Animals?

DEEP NEUROETHOLOGY OF A VIRTUAL RODENT

Josh Merel^{*1}, Diego Aldarondo^{*2,3}, Jesse Marshall^{*3,4}, Yuval Tassa¹,

Greg Wayne¹, Bence Ölveczky^{3,4}

¹DeepMind, London, UK.

²Program in Neuroscience, ³Center for Brain Science, ⁴Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.

Figure 1: (A) Anatomical skeleton of a rodent (as reference; not part of physical simulation). (B) A body designed around the skeleton to match the anatomy and model collisions with the environment. (C) Purely cosmetic skin to cover the body. (D) Semi-transparent visualization of (A)-(C) overlain.

Figure 2: Visualizations of four tasks the virtual rodent was trained to solve: (A) jumping over gaps ("gaps run"), (B) foraging in a maze ("maze forage"), (C) escaping from a hilly region ("bowl escape"), and (D) touching a ball twice with a forepaw with a precise timing interval between touches ("two-tap").

Input: Perceptual information / Visual information

Goal:

Through deep reinforcement learning methods to train an ANN (Perception: Small-ResNet; Core layer: LSTM; Policy layer: LSTM) to complete four different tasks in virtual environment.

Results:

- 1. Some behavioral representations were shared across tasks, especially in the policy layers.
- 2. Policy layers encoded more <u>low-level motor features</u>, while core layers encoded <u>higher-level task variables</u>.
- 3. Networks with fewer layers showed more sharing of representations across tasks.

Limitations:

- 1. Cannot well mimic the real-world actions and behaviors.
- 2. Four specific tasks cannot cover the whole action space.

Merel, J., Aldarondo, D., Marshall, J., Tassa, Y., Wayne, G., & Olveczky, B. (2020). Deep neuroethology of a virtual rodent. In *International* 8 Conference on Learning Representations.

- 1. Introduction to Bence P. Ölveczky
- 2. Background
- 3. Framework
- 4. Results
- 5. Discussion

How to replicate the movement and behavior of real animals?

Four key aspects of replication.

MIMIC Framework: Motor IMItation and Control

Step 1: Data acquisition

- 6 cameras for behavior recording
- 2 128-channel tetrode for brain neural activities recording

Step 2: 3D pose estimation

 Using DANNCE to track 23 anatomical landmarks (key points) on the rat

Step 3: Skeletal registration

 Register a 74 degree-of-freedom / 38 controllable degrees-offreedom skeletal rat model to the key points

Step 4: Imitation

- Trained ANNs to achieve inverse dynamics models using DRL
- Input: reference trajectories and current body state
- Outputs: joint torques

- 1. Introduction to Bence P. Ölveczky
- 2. Background
- 3. Framework
- 4. Method & Results
- 5. Discussion

Training Artificial Agents to Imitate Rat Behavior with MIMIC

Training Artificial Agents to Imitate Rat Behavior with MIMIC

C. Behavior demonstration Rear (后肢站立) Walk (自然行走)

D. Simulation error of different body parts

E. Simulation error of different behavior

F. Illustration of error accumulation over time

G. Robustness evaluation: Demonstrate how long the virtual mouse model can continue to accurately mimic the behavior of a real mouse without triggering termination and reset conditions

Neural Activity of Virtual and Real Rat

Real rat

Top: <u>A-P</u>: Distance between each anterior-posterior (A-P) position of the key points and centroid position of rat; <u>Height</u>: Key points' height from floor.

Bottom: DLS (Dorsolateral striatum, 背外侧纹状体, responsible for motor control and coordination) spike train Virtual rat

Different representation value trains

ref: Reference trajectory	σ: Latent variability	s: State
μ: Latent mean	z: Latent sample	a: Action

16

Neural Activity in DLS and MC is Well Predicted by An Inverse Dynamics Model

Fig. B-C: Using Poisson generalized linear models (GLM) to construct the relationship between each real-world <u>neuronal</u> activity and <u>different virtual rodent representations</u>.

Key finding: GLMs based on the inverse dynamics models outperform those based on representational features for the majority of classified neurons in both DLS and MC.

Similar Patterns of Neuron Population between Virtual and Real Brain

Background knowledge:

- The <u>DLS</u> plays a key role in <u>learning movement sequences</u>, influencing the output of the motor cortex (MC).
- The <u>MC</u> is responsible for executing the final selected action (similar to decoder).

Similar Patterns of Neuron Population between Virtual and Real Brain

Fig. C-E: Across-subject average of <u>whitened-</u> <u>unbiased cosine (WUC)</u> similarity between <u>RDMs</u> of different computational and representational models and neural activity. **Results:** Inverse dynamics models (Green & Blue) perform better than representational models (Red) F

Fig. F-I: Similarity between neural activity and each of network layers. Results: Neural dynamics in <u>MC</u> is easier to predict by artificial neural network.

Action Variability & Latent Variability

Variability calculation method: Resampling the latent space 50 times at every step to obtain instantaneous action variability and latent variability

Action Variability & Latent Variability

D. Trajectories of six latent dimensions along which variability was differentially regulated across behavior.

E. The population latent variability discriminates behaviors.

F-H. The deviations from normal variability structure <u>reduce</u> the model's <u>robustness</u> to noise.

I. The virtual rodent model is able to adaptively adjust the variability in the latent space according to different behavioral demands (Fig.I-right). Different behaviors may require precise control in different latent dimensions (Fig.I-left). This is reflected in the reduction of variability in critical dimensions in the latent space.

- 1. Introduction to Bence P. Ölveczky
- 2. Background
- 3. Framework
- 4. Method & Results
- 5. Discussion

Bridging The Relationship between Neural Activity and Behavior via Al Agent

George et al. (2024). Elife.

George, T. M., Rastogi, M., de Cothi, W., Clopath, C., Stachenfeld, K., & Barry, C. (2024). RatInABox, a toolkit for modelling locomotion and neuronal activity in continuous environments. *Elife*, *13*, e85274. Whittington, J. C., Dorrell, W., Ganguli, S., & Behrens, T. (2023). Disentanglement with biological constraints: A theory of functional cell types. In *The Eleventh International Conference on Learning Representations*.

Bridging Neural Dynamics and Behaviour via Virtual Insect

Goal: use deep reinforcement learning to train **RNN** agents to <u>locate the</u> <u>source of simulated odor plumes</u> in changing wind conditions.

Input: wind velocity [wind-X, wind-Y] and local odor concentration. **Output**: move / turn

Results:

1. Well-trained RNN exhibited similar behaviors compared to those of realworld flying insects tracking odor plumes:

- Upwind surges when detecting odor
- Cross-wind casts and U-turns when losing the odor trail
- Different behavioral modules for tracking, recovering, and being lost

2. Long timescale memory is crucial for RNN to track odor plumes

Singh, S. H., van Breugel, F., Rao, R. P., & Brunton, B. W. (2023). Emergent behaviour and neural dynamics in artificial agents tracking odour plumes. *Nature machine intelligence*, *5*(1), 58-70.

Other virtual animals: Virtual Drosophila Simulator

Overview:

NeuroMechFly is the first <u>comprehensive</u>, <u>morphologically</u> accurate neuromechanical simulation framework for the adult drosophila.

Simulation framework:

Obtaining <u>tactile information</u> when fruit flies come into contact with the environment through dynamic replay and inverse dynamics calculation.

Possible future work:

Construct a neural network as controller which take <u>tactile</u> <u>information as input</u>, and <u>output the</u> <u>kinematic statistics for motion</u>. This might help us to explore the <u>network</u> <u>dynamics behind environmental</u> <u>stimulus and behaviors</u>.

Lobato-Rios, V., Ramalingasetty, S. T., Özdil, P. G., Arreguit, J., Ijspeert, A. J., & Ramdya, P. (2022). NeuroMechFly, a neuromechanical model of adult Drosophila melanogaster. *Nature Methods*, 19(5), 620-627.

Thanks for your attention!